首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可导,且f(a)=f(b)=0,f’(a)<0,f’(b)<0,则方程f’(x)在(a,b)内( )。
设f(x)在(a,b)内可导,且f(a)=f(b)=0,f’(a)<0,f’(b)<0,则方程f’(x)在(a,b)内( )。
admin
2015-11-16
42
问题
设f(x)在(a,b)内可导,且f(a)=f(b)=0,f’(a)<0,f’(b)<0,则方程f’(x)在(a,b)内( )。
选项
A、没有实根
B、有且仅有一个实根
C、有且仅有两个不相等的实根
D、至少有两个不相等实根
答案
D
解析
解 因
故在a的某邻域内存在点x
1
,a<x
1
<
,使f(x
1
)<0。
同理由f’(b)<0知,必存在点x
2
,
<x
2
<b,使f(x
2
)>0。由连续函数性质(介值定理)知,存在c∈(x
1
,x
2
)
(a,b),使f(c)=0。
在闭区间[a,c]和[c,b]上对f(x)分别使用罗尔定理知,至少存在一点ξ
1
∈(a,c),使得f’(ξ
1
)=0,至少存在一点ξ
2
∈(c,b),使得f’(ξ
2
)=0,故方程f’(x)=0在(a,b)内至少有两个不相等的实根,仅(D)入选。
转载请注明原文地址:https://www.kaotiyun.com/show/XUw4777K
0
考研数学一
相关试题推荐
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型记x=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的矩阵为A-1;
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
计算n阶行列式=_______.
设有3阶实对称矩阵A满足A3-6A2+11A-6E=0,且|A|=6.判断二次型f=xT(A+E)x的正定性.
已知齐次线性方程组=有非零解,且矩阵A=晕正定矩阵.(1)求a的值;(2)求当XTX=2时,XTAX的最大值,其中X=(χ1,χ2,χ3)T∈R3.
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导,证明:在(a,b)内至少存在一点ξ,使得等式=f(ξ)-ξf’(ξ)成立。
设容器的内表面是由曲线x=y+siny(0≤y≤π/2)绕y轴旋转一周所得的旋转曲面,若以π(m3/s)的速率注入液体。当液面高度为π/4(m)时,求液面上升的速率
计算曲面积分,其中∑是面x2+y2+z2=1的外侧.
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
(2009年试题,17)椭球面S1是椭圆绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕轴旋转而成.求S1与S2之间的立体体积.
随机试题
试述抗战前国民党中政会与国民政府的关系。
男青年腰椎骨折后走路正常,大小便失禁,应考虑
患者,男性,26岁,左下第一磨牙咬合面深龋伴可复性牙髓炎。治疗用的材料是
吵吵嚷嚷的联合国气候变化大会才在印尼巴厘岛落幕,世界各国为应对全球变暖问题措施的争吵刚消失没几天,中国就遭受了雪灾,部分地区甚至是半个世纪不遇的超大雪灾,受灾人口超过1亿。紧接着加拿大和美国也相继出现了大雪灾;不到1个月巴格达竟然也百年不遇地下起了雪。“不
企业取得的下列政府资源,不属于政府补助的是()。
试指出OSI所包括的三级抽象及各自的具体内容。
古代人看到龋齿的形态和被虫蚁啃噬后的木材很相似,他们推断,在口腔里有一种叫做“牙虫”的虫子,像白蚁啃噬木头那样侵蚀我们的牙齿。很可能是因为白蚁的危害曾经遍及全球,这一理论出现在所有的古代文明里,包括两河流域、古印度、古埃及以及古代中国。这段文字重在说明(
[*]
设f(x)∈C[a,b]且f(x)为单调增函数,若f(a)<0,,证明:存在η∈(a,b),使得
Manyinstructorsbelievethataninformal,relaxedclassroomenvironmentis【C1】______tolearningandinnovation.Itisnotuncom
最新回复
(
0
)