首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续且严格单调增加,证明:(a+b)∫abf(x)dx<2∫abxf(x)bx.
设f(x)在[a,b]上连续且严格单调增加,证明:(a+b)∫abf(x)dx<2∫abxf(x)bx.
admin
2015-08-14
37
问题
设f(x)在[a,b]上连续且严格单调增加,证明:(a+b)∫
a
b
f(x)dx<2∫
a
b
xf(x)bx.
选项
答案
令F(t)=(a+t)∫
a
t
dx一2∫
a
t
xf(x)dx,则 F’(t)=∫
a
t
f(x)dx+(a+t)f(t)一2tf(t) =∫
a
t
f(x)dx一(t-a)f(t)=∫
a
t
f(x)dx-∫
a
t
f(t)dx =∫
a
t
[f(x)—f(t)]dx. 因为a≤x≤t,且f(x)在[a,b]上严格单调增加,所以f(x)一f(t)≤0,于是有 F’(t)=∫
a
t
[f(x)一f(t)]dx≤0, 即F(t)单调递减,又F(a)=0,所以F(b)<0,即 (a+b)∫
a
b
f(x)dx一2∫
a
b
xf(x)dx<0, 即(a+b)∫
a
b
f(x)dx<2∫
a
b
xf(x)dx.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/XM34777K
0
考研数学二
相关试题推荐
[*]
设f(x)=1/πx+1/sinπx-1/π(1-x),x∈[1/2,1),试补充定义使得f(x)在[1/2,1]上连续.
确定常数a,c的值,使得,其中c为非零常数.
设α1,α2,α3,β1,β2都是四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,β1+β2|为().
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(
交换积分次序=__________.
求极限.
设函数f(x)在x=0处可导,且f(0)=1,f’(0)=3,求数列极限
设当0≤x<1时,f(x)=x(b2-x2),且当-1≤x<0时,f(x)=af(x+1),并设f’(0)存在,则a=________,b=________,f’(0)=________.
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
随机试题
—Haveyoumovedintothenewhouse?—Notyet,therooms________.
补体的激活途径有______、______、______。
铸造侧腭杆与余留牙的关系应为
抗痨化疗方案的两个阶段包括)
在护患交谈中,移情是指护士
会计职业道德具有广泛的社会性。()
甲于20l8年3月20日将小件包裹寄存乙处保管。3月22日,该包裹被盗。3月27日,甲取包裹时得知包裹被盗。甲要求乙赔偿损失的诉讼时效期间届满日是()。
春秋时期,周天子的地位一落千丈,诸侯王不再听命于周王,一些强大的诸侯趁机发动兼并战争。强迫其他各国承认其霸主地位。管仲辅佐____打着“尊王攘夷”旗号,使其“九合诸侯,一匡天下”,成为春秋时期第一个霸主。
在一定程度上,技术的飞速发展与国家之间的竞争有着_______的关系。二战抑或冷战时期,某些领域尤其是军事领域的科学突破即是例证,以登月为标志的航天科技的突飞猛进只是其中之一。但如果将今天的进步缓慢归因于竞争不充分,甚至怀念那样一个阴暗、极端、意识狭隘的时
设一棵完全二叉树共有700个结点,则在该二叉树中有______个叶子结点。
最新回复
(
0
)