首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个五阶矩阵,A*是A的伴随矩阵,若η*,η2是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=_________。
设A是一个五阶矩阵,A*是A的伴随矩阵,若η*,η2是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=_________。
admin
2018-02-07
75
问题
设A是一个五阶矩阵,A
*
是A的伴随矩阵,若η
*
,η
2
是齐次线性方程组Ax=0的两个线性无关的解,则r(A
*
)=_________。
选项
答案
0
解析
η
1
,η
2
是齐次线性方程组Ax=0的两个线性无关的解。由方程组的基础解系所含解向量的个数与系数矩阵秩的关系,可得n一r(A)≥2,即r(A)≤3。又因为A是五阶矩阵,所以|A|的四阶子式一定全部为零,则代数余子式A
ij
恒为零,即A
*
=0,所以r(A
*
)=0。
转载请注明原文地址:https://www.kaotiyun.com/show/XHk4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 C
A、 B、 C、 D、 C
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
拟建一个容积为V的长方体水池,设它的底为正方形,如果池底单位面积的造价是四周单位面积造价的2倍,试将总造价表示成底边长的函数,并确定此函数的定义域。
证明下列各题:
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(1)存在η∈(1/2,1),使f(η)=η;(2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
求下列各微分方程的通解(1)2y〞+yˊ-y=2ex;(2)y〞+a2y=ex;(3)2y〞+5yˊ=5x2-2x-1;(4)y〞+3yˊ+2y=3xe-x;(5)y〞-2yˊ+5y=exsin2x;(6)y〞-6yˊ+9y=
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=(x)在点(6,f(6))处的切线方程.
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体,若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f(x)的表达式
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
随机试题
化脓性关节炎与急性痛风性关节炎的区别是
膜性肾小球肾炎的主要病理特点是
关于通信市场,下列说法不正确的是()。
法国新古典主义画家大卫的作品《__________》,表达作者对遇刺战友的崇敬。
下列叙述错误的一项是()。
2015年中央一号文件首次提出农村法治建设,以下属于加强农村法治建设措施的是()。
下面关于胶原酶的说法错误的是()。
晴朗的夜晚我们可以看到满天星斗,其中有些是自身发光的恒星,有些是自身不发光但可以反射附近恒星光的行星。恒星尽管遥远,但是有些可以被现有的光学望远镜“看到”。和恒星不同,由于行星本身不发光,而且体积远小于恒星,所以,太阳系外的行星大多无法用现有的光学望远镜“
以下关于函数的叙述中正确的是()。
IfIamnot_____whenyoucometomyoffice,askformysecretary.
最新回复
(
0
)