首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
下面是人教版高中数学必修5的一节内容,请据此回答下面的问题。 1.1.1 正弦定理 探究 我们知道,在任意三角形中有大边对大角,小边对小角的边角关系。我们是否能得到这个边、角关系准确量化的表示呢? 在△ABC中,如果已知∠A所对的边BC长为a,∠B所对
下面是人教版高中数学必修5的一节内容,请据此回答下面的问题。 1.1.1 正弦定理 探究 我们知道,在任意三角形中有大边对大角,小边对小角的边角关系。我们是否能得到这个边、角关系准确量化的表示呢? 在△ABC中,如果已知∠A所对的边BC长为a,∠B所对
admin
2019-06-10
61
问题
下面是人教版高中数学必修5的一节内容,请据此回答下面的问题。
1.1.1 正弦定理
探究
我们知道,在任意三角形中有大边对大角,小边对小角的边角关系。我们是否能得到这个边、角关系准确量化的表示呢?
在△ABC中,如果已知∠A所对的边BC长为a,∠B所对的边AC长为b,∠C所对的边AB长为c,我们研究∠A,∠B,∠C,a,B,c之间有怎样的数量关系。
由于我们不容易直接得到一般三角形中边和角的关系,所以,我们先考虑直角三角形这种特殊的情形。
如图1.1-1,在Rt△ABC中,∠C是最大的角,所对的斜边c是最大的边,要考虑边长之间的数量关系,就涉及锐角三角函数。根据正弦函数的定义,
那么对于一般的三角形,以上关系式是否仍然成立呢?
如图1.1-2,当△ABC是锐角三角形时,设边AB上的高是CD,根据三角函数的定义
CD=ainB,
CD=bsinA,
所以
asinB=bsinA,
得到
同理,在△ABC中,
当△ABC是钝角三角形时,以上等式仍然成立吗?是否可以用其他方法证明正弦定理?
从上面的讨论和探究,我们得到下面的定理。
正弦定理(law of sines)在一个三角形中,各边和它所对角的正弦的比相等,即
正弦定理指出了任意三角形中三条边与对应角的正弦之间的一个关系式。由正弦函数在区间上的单调性可知,正弦定理非常好地描述了任意三角形中边与角的一种数量关系。
一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫作三角形的元素。已知三角形的几个元素求其他元素的过程叫作解三角形(solving triangles)。
问题:
请为本节课设计课堂导入。
选项
答案
复习导入: 在直角三角形中,可由三角形内角和公式、勾股定理、锐角三角函数来利用已知的边和角来求未知的边和角。那么在斜三角形中有类似的性质吗?答案是肯定的,就是我们今天要学习的正弦定理。 问题导入: 我们知道,在任意三角形中有大边对大角,小边对小角的边角关系,我们能否得到这个边角关系的量化表示呢?这正是我们这节课要研究的正弦定理。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Wgtv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
央视播出的纪录片《民族的吼声》获得了广泛的好评。它以8首抗战歌曲的创作历程为线索,展现了那个烽火连天的时代,唤醒了人们尘封已久的抗战记忆。材料表明()。
阅读下列材料,根据要求完成教学设计。★接纳与欣赏自己如同世界上没有两片完全相同的树叶一样,世界上也没有完全相同的两个人。我们每个人在性格、兴趣等方面都有自己的特点。随着对自己认识的不断深入,我们的自我形象也会越发清晰。我们要学会接纳自己。接纳自己,需
下列家庭投资理财方式中,风险和收益都按照从低到高顺序排列的最有可能是()。
在中国,手机已是更新换代频率很高的电子产品,手机支付、办公、游戏、社交、网络浏览等已成为一种消费时尚和文化现象。这体现了()。①文化与经济的相互交融②文化是科技发展的动力③文化决定人的价值取向④文化改变人的生活方式
某教师在讲述“人民群众是社会精神财富的创造者”时,选取了藏族史涛《格萨尔王传》,引导学生思考《格萨尔王传》的创作和流传离不开人民群众的参与。该教师运用的教学方法是()。
英国科学家波普尔说:“如果我们过于爽快地承认失败,就可能使自己发觉不了我们多么接近正确。”这句话告诉我们()。①辩证否定是事物之间的相互否定②事物发展是前进性与曲折性的统一③矛盾双方在一定条件下相互转化④真理
积分的值是()。
在空间直角坐标系中,由参数方程确定的曲线的一般方程是()。
设A,B,A+B,A—1+B—1均为n阶可逆矩阵,则(A—1+B—1)—1=()。
设M、N为随机事件,P(N)>0,且条件概率P(M∣N)=1,则必有
随机试题
赔偿请求人向共同赔偿机关中的一个要求赔偿时,该赔偿义务机关应当如何办理()
蟾蜍内BL次用量为
A、先天性铁储存不足B、铁摄入不足C、铁丢失过多D、铁吸收减少E、生长发育快慢性腹泻可使婴儿()
根据规定,下列各项中被告资格确定正确的是()。
论述证券的含义及立法意义。
管理者除了人际关系,信息传递的方面角色外,还有()
中国证监会可以对( )等特殊行业上市公司的信息披露做出特别规定。
简述学习高等教育心理学的重要作用。
7,9,11,15,23,55,()
引起艺术鉴赏再创造性的原因在于艺术作品的多义性和()。
最新回复
(
0
)