首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数u(x,y),v(x,y)在D:x2+y2≤1上一阶连续可偏导,又 f(x,y)=v(x,y)i+u(x,y)j,g(x,y)=()j, 且在区域D的边界上有u(x,y)≡1,v(x,y)≡y,求f.gdσ.
设函数u(x,y),v(x,y)在D:x2+y2≤1上一阶连续可偏导,又 f(x,y)=v(x,y)i+u(x,y)j,g(x,y)=()j, 且在区域D的边界上有u(x,y)≡1,v(x,y)≡y,求f.gdσ.
admin
2018-05-21
62
问题
设函数u(x,y),v(x,y)在D:x
2
+y
2
≤1上一阶连续可偏导,又
f(x,y)=v(x,y)i+u(x,y)j,g(x,y)=(
)j,
且在区域D的边界上有u(x,y)≡1,v(x,y)≡y,求
f.gdσ.
选项
答案
[*] =∫
0
2π
(-sin
2
θ+sinθcosθ)dθ=-π(其中L为单位圆周的正向).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/WOr4777K
0
考研数学一
相关试题推荐
(1)计算I=绕z轴旋转一周所成的曲面与平面z=8所围成的区域.(2)计算曲线积分∮C(z—y)dx+(x一z)dy+(x一y)dz,其中C是曲线从z轴正向往z轴负向看,C的方向是顺时针的.(3)在某一人群中推广新技术是通过其中掌握新技
方程xxy"+2xy’一2y=0的通解为()
计算下列反常积分(广义积分)的值.
计算曲面积分I=2x3dydz+2y3dzdx+3(z2一1)dxdy,其中∑是曲面z=1一x2一y2(z≥0)的上侧.
设矩阵有一个特征值是3.(Ⅰ)求y的值;(Ⅱ)求正交矩阵P,使(AP)TAP为对角矩阵;(Ⅲ)判断矩阵A2是否为正定矩阵,并证明你的结论.
设4元齐次线性方程组(I)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1).(1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cχ=0的基础解系,B是m阶可逆矩阵,证明:BA的行向量也是齐次方程组Cχ=0的基础解系.
(92年)在变力F=yzi+xzj+xyk的作用下,质点由原点沿直线运动到椭球面=1上第一卦限点M(ξ,η,ζ),问当ξ,η,ζ取何值时,力F所作的功W最大?并求出W的最大值.
设f(x)在(0,+∞)三次可导,且当∈(0,+∞)时|f(x)|≤M0,|f"’(x)|≤M3,其中M0,M3为非负常数,求证f”(x)在(0,+∞)上有界.
随机试题
社会主义荣辱观的科学内涵是什么?
用于预防复发疗效最好的抗疟药是
注册监理工程师在执业活动中应履行的义务是()。
上市公司申请发行新股,要求现任董事、监事和高级管理人员具备任职资格,能够忠实和勤勉的履行职务,最近( )个月内未受到过中国证监会的行政处罚、最近( )个月内未受到过证券交易所的公开谴责。( )
一旦商业银行采用了(),未经监管当局批准不可退回使用相对简单的方法。
酝酿效应是指当一个人长时间致力于解决某一问题而又百思不得其解时,如果他暂停下来去做别的事情,一段时间之后,他可能会忽然想到解决的办法。下列属于酝酿效应的一项是()。
【2013广州NO.23】企业应该具有正确的经营观念和使命观。如果公司的基本思想和方针是明确的,那么,经营者就能够据此施行强有力的领导,而且每个人也都能够根据这一基本思想和方针去判断是非,这样就容易培养出人才。反之,经营者对部下的领导就会缺乏一贯性,很可能
元音(兰州大学2015)
在距离摩洛哥东部边境数千里处有一座古代约旦城市的遗址中,发现了一个钱袋,其中有32个刻着摩洛哥文字的金币。当时这个城市是联结中国和欧洲的丝绸之路上的一个重要商贸中心,并且又是摩洛哥去麦加的朝圣者一个重要的中途停留地。因此,上述这个钱袋可能装有其他种类的硬币
A"memorypill"thatcouldaidexamrevisionandhelptopreventpeopleforgettingimportantanniversariesmaysoonbeavailable
最新回复
(
0
)