首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(—1,2,—1)T,α2=(0,—1,1)T是线性方程组Ax=0的两个解。 求A的特征值与特征向量。
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(—1,2,—1)T,α2=(0,—1,1)T是线性方程组Ax=0的两个解。 求A的特征值与特征向量。
admin
2018-12-29
46
问题
设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(—1,2,—1)
T
,α
2
=(0,—1,1)
T
是线性方程组Ax=0的两个解。
求A的特征值与特征向量。
选项
答案
因为矩阵A的各行元素之和均为3,所以有 [*] 则λ=3是矩阵A的特征值,α=(1,1,1)
T
。是对应的特征向量。对应λ=3的全部特征向量为kα=k(1,1,1)
T
,其中k是不为零的常数。 又由题设知Aα
1
=0,Aα
2
=0,即Aα
1
=0.α
1
,Aα
2
=0.α
2
,而且α
1
,α
2
线性无关,所以λ=0是矩阵A的二重特征值,α
1
,α
2
是其对应的特征向量,因此对应λ=0的全部特征向量为 k
1
α
1
+k
2
α
2
=k
1
(—1,2,—1)
T
+k
2
(0,—1,1)
T
,其中k
1
,k
2
是不全为零的常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/VxM4777K
0
考研数学一
相关试题推荐
设f(x)在[-a,a]上具有三阶连续导数,且满足f’(x)=x2+∫0xtf(x-t)dt,f(x)=0,证明:存在一点ξ∈[-a,a],使得a4|f’’’(ξ)|=12∫-aa|f(x)|dx.
设向量a={1,2,3),b={1,1,0),若非负实数k使得向量a+kb与a-kb垂直,则实数k的值为______.
袋中有5个白球、1个黑球和4个红球,用非还原方式先后从袋中取出两个球.考虑随机变量试求X1和X2的联合概率分布.
A是3阶实对称矩阵,其主对角线上元素都是0,并且α=(1,2,-1)T满足Aα=2α.求正交矩阵P使P-1AP可相似对角化.
已知ξ1,2是方程组(λE-A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量是().
设A是三阶实对称矩阵,A的特征值是λ1=1,λ2=2,λ3=-1,且分别是λ1,λ2对应的特征向量,A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量是求a及λ0的值,并求矩阵A.
已知矩阵与对角矩阵相似,求An.
设三阶实对称矩阵A的特征值分别为0,1,1,是A的两个不同的特征向量,且A(α1+α2)=α2.求正交矩阵Q,使得QTAQ为对角矩阵.
随机试题
A.100~130次/分B.150~250次/分C.350~600次/分D.100~250次/分E.120~220次/分室性心动过速的心室率多为
下列情形中,属于劳动合同终止的是()
刘某到某医院妇产科门诊做人工流产。一女医生叫其进门诊检查室,刘脱下衣服后躺在检查床上,告诉医生自己准备好了。约1分钟后,医生推门而人,接着对外面的人说:“你们都进来”。随后进来了10多个穿白大褂的男女青年。“我当时只穿了件短袖T恤,一下子面对这么多
A.单棕榈酸甘油酯B.聚乙二醇6000C.甲基纤维素D.甘油E.乙基纤维素可用于膜控片的致孔剂
人民法院对于下列哪种案件,根据当事人申请,可以书面裁定先予执行?()
咨询工程师必须具备的素质有()。
根据《工程建设项目施工招投标办法》,对于应当招标的工程建设项目,经批准可以不采用招标发包的情形是()。
静力破碎的安全技术措施有( )。
贾某与甄某酒后斗殴,分别被科以200元罚款和5天拘留。这类处罚属于()。(2014法单5)
"Makeadifference"Oneminutevideocompetition!Lookingforawaytomakeadifference?Createaone-minutevideototellt
最新回复
(
0
)