首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组 的通解,并说明理由。[img][/img]
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组 的通解,并说明理由。[img][/img]
admin
2020-03-16
77
问题
已知方程组
的一个基础解系为(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
。试写出线性方程组
的通解,并说明理由。[img][/img]
选项
答案
由题意可知,线性方程组(2)的通解为 y=c
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
11
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
, 其中c
1
,c
2
,…,c
n
是任意的常数。 这是因为: 设方程组(1)和(2)的系数矩阵分别为A,B,则根据题意可知AB
T
=O,因此 BA
T
=(AB
T
)
T
=O, 可见A的n个行向量的转置为(2)的n个解向量。 由于B的秩为n,所以(2)的解空间的维数为2n—r(B)=2n—n=n,又因为A的秩等于2n与(1)的解空间的维数的差,即n,因此A的n个行向量是线性无关的,从而它们的转置向量构成(2)的一个基础解系。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Vs84777K
0
考研数学二
相关试题推荐
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.求方程组AX=0的通解.
计算下列积分(其中a为常数):
当a,b取何值时,方程组无解、有唯一解、有无数个解?在有无数个解时求其通解.
设z=z(x,y)是由方程xy+x+y-z=ez所确定的二元函数,求dz,
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)f’(0)≠0,当h→0时,若af(h)+bf(2h)-f(0)=o(h),试求a,b的值.
设曲线y=xn在点(1,1)处的切线交x轴于点(ξn,0),求
求曲线y=χ2-2χ、y=0、χ=1、χ=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
设D=((x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数.计算二重积分
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为_________.
(1996年)设有正椭圆柱体,其底面的长短轴分别为2a,2b,用过此柱体底面的短轴与底面成口角(0<a<)的平面截此柱体,得一楔形体(如图2.10)求此楔形体的体积.
随机试题
关于奥利司他的说法,错误的是
关于胃肠内在神经丛的叙述,正确的是
A.γ-GT1B.γ-GT2C.γ-GT3D.γ-GT4E.LD胰腺炎时()增加
朱砂安神丸的作用是
乳剂不稳定原因有()
【真题(中级)】某公司向银行借款500万元,年利率8%,银行要求维持贷款限额10%的补偿性余额,则该项借款的实际利率是()。
政府预算的原则随社会经济的发展而不断变化,在预算制度发展的各个阶段重点强调的预算原则包括()。
根据增值税法律制度的规定,下列关于增值税一般纳税人和小规模纳税人的有关说法正确的有()。
根据以下资料.回答问题。2012年,中国内地对中国香港和中国台湾货物出口额之和占货物出口总额的比重约为()。
小学生解决类似“三分之一加四分之三等于几”这样的问题所需要的知识在心理学上称为()
最新回复
(
0
)