首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
①设α1,α2,…,αs和β1,β2,…βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt). ②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B). ③设A和B是两个
①设α1,α2,…,αs和β1,β2,…βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt). ②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B). ③设A和B是两个
admin
2017-07-10
65
问题
①设α
1
,α
2
,…,α
s
和β
1
,β
2
,…β
t
都是n维向量组,证明r(α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
)≤r(α
1
,α
2
,…,α
s
)+r(β
1
,β
2
,…,β
t
).
②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
③设A和B是两个列数相同的矩阵,
表示A在上,B在下构造的矩阵.证明
选项
答案
这是3个互相等价的命题:①是②的向量形式;③是②的转置形式.因此对其中之一的证明就完成了这3个命题的证明. 证明①.取{α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
}的一个最大无关组(Ⅰ),记(Ⅰ)
1
是(Ⅰ)中属于α
1
,α
2
,…,α
s
中的那些向量所构成的部分组,(Ⅰ)
2
是(Ⅰ)中其余向量所构成的部分组.于是(Ⅰ)
1
和(Ⅰ)
2
分别是属于α
1
,α
2
,…,α
s
和β
1
,β
2
,…,β
t
的无关部分组,因此它们包含向量个数分别不超过r(α
1
,α
2
,…,α
s
)和r(β
1
,β
2
,…,β
t
).从而 r(α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
)=(Ⅰ)中向量个数 =(Ⅰ)
1
中向量个数+(Ⅰ)
2
中向量个数 ≤r(α
1
,α
2
,…,α
s
)+r(β
1
,β
2
,…,β
t
).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Vet4777K
0
考研数学二
相关试题推荐
[*]
[*]
考察下列函数的极限是否存在.
某商品的价格P与需求量Q的关系为P=10-Q/5(1)求需求量为20及30时的总收益R、平均收益R及边际收益Rˊ;(2)Q为多少时总收益最大?
A、0B、1C、-π/2D、π/2A判断间断点类型的基础是求函数在间断点处的左、右极限.
f(x)连续,且f(0)≠0,求极限
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0).试求曲线L的方程;
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设当x→0时,按照前面一个比后面一个为高阶无穷小的次序排列为()
随机试题
感染性多发性神经根炎又称
A.溶液型气雾剂B.乳剂型气雾剂C.喷雾剂D.混悬型气雾剂E.吸入粉雾剂采用特制的干粉吸入装置,由患者主动吸入雾化药物的制剂。
常用的吗啡和海洛因所致的药物依赖脱毒治疗时重要的替代药是
A.经皮肤感染B.经蜱叮咬感染C.经蚊叮咬感染D.经白蛉叮咬感染E.经口惑染某散养猪群,其中数头猪屠宰后见肌肉组织内有米粒或黄豆大小半透明囊泡,囊泡壁上有一个乳白色结节。该病原的感染途径是
以下哪一物质是环磷酰胺导致出血性膀胱炎的主要原因()。
房地产估价是由()决定的。
盘亏和毁损的固定资产,在减去过失人的赔偿和残料价值之后,经批准应记入()。
“新思潮的精神是一种评判的态度。新思潮的手段是研究问题和输入学理。……新思潮对旧文化的态度,在积极一面是反对盲从,是反对调和,是用科学的方法来做整理的工夫。新思潮的唯一目的是什么?是再造文明。”下列历史事件中,体现新思潮的是()。
现有一种解决无向连通图的最小生成树的方法:将图中所有边按权重从大到小排序为(e1,e2,…,em);i=1;while(所剩边数≥顶点数){从图中删去ei;若图不再连通,则恢复ei;i++;
Text…Astime【C1】______by,Iwasabletowork【C2】______myfears.NowIunderstandthattheclosestIhaveeverfelttoGo
最新回复
(
0
)