首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3. ① 求A的特征值. ② 求A的特征向量. ③ 求A*一6E的秩.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3. ① 求A的特征值. ② 求A的特征向量. ③ 求A*一6E的秩.
admin
2022-04-08
42
问题
已知A是3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量组,满足Aα
1
=一α
1
一3α
2
—3α
3
,Aα
2
=4α
1
+4α
2
+α
3
,Aα
3
=一2α
1
+3α
3
.
① 求A的特征值.
② 求A的特征向量.
③ 求A
*
一6E的秩.
选项
答案
① 记P=(α
1
,α
2
,α
3
),因为α
1
,α
2
,α
3
是线性无关,所以P是可逆矩阵.AP=(Aα
1
,Aα
2
,Aα
3
)=(一α
1
一3α
2
—3α
3
,4α
1
+4α
2
+α
3
,一2α
1
+3α
3
)[*] 得A的特征值为1,2,3.② 思路:先求B的特征向量,用P乘之得到A的特征向量.(如果Bη=λη,则P
一1
APη=λη,即A(Pη)=λ(Pη).)对于特征值1: [*] B的属于特征值1的特征向量(即(B一E)x=0的非零解)为c(1,1,1)
T
,c≠0. 则A的属于特征值1的特征向量为c(α
1
+α
2
+α
3
)
T
,c≠0.对于特征值2: [*] B的属于特征值2的特征向量(即(B一2g)x=0的非零解)为c(2,3,3)
T
,c≠0.则A的属于特征值2的特征向量为c(2α
1
+3α
2
+3α
3
)
T
,c≠0。对于特征值3: [*] B的属于特征值3的特征向量(即(B一3g)x=0的非零解)为c(1,3,4)
T
,c≠0.则A的属于特征值3的特征向量为c(α
1
+3α
2
+4α
3
)
T
,c≠0. ③ 由A的特征值为1,2,3,|A|=6.于是A
*
的特征值为6,3,2,A
*
一6E的特征值为0,一3,一4. [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Vbf4777K
0
考研数学二
相关试题推荐
设函数f(χ)在χ=0的某邻域内连续,且满足=-1,则χ=0
曲线上t=1对应的点处的曲率半径为().
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处两个偏导数存在若用“”表示可由性质P推出性质Q,则有
设f(0)=0,则f(x)在点x=0处可导的充要条件为()
设三阶矩阵A的特征值为-1,1,2,其对应的特征向量为α1,α2,α3,令P=(3α2,-α3,2α1),则P-1AP等于().
若函数f(-x)=f(x)(一∞<x<+∞),在(一∞,0)内f’(x)>0且f"(x)<0,则在(0,+∞)内有().
函数f(x)=在x=π处的()
函数f(x)在区间(﹣1,1)内二阶可导,已知f(0)=0,f’(0)=1,且当x∈(﹣1,1)时f’’(x)﹥0成立,则()
设f(x)=,f[φ(x)]=1一x,且φ(x)≥0,求φ(x)及其定义域.
随机试题
中国近代史是一部屈辱史,又是一部抗争史。先进的中国人为了寻求救国救民的真理,不断向西方学习,开始了中国的近代化。为中国的近代化开辟了道路的历史事件是()。
根据以下材料,回答问题。降雨来源于云层,云层中的水蒸气遇到冷空气或某些成核物质后,就会很快冷凝而降落下来,所以冷暖空气相遇之处就是雨水多发的地带,这就是天气预报的基础:遇到干旱,给云层来一发干冰或碘化银炮弹,通过干冰降温或碘化银增加成核物质的手段增加降雨
留存收益的所有权属于______。
马克思主义哲学最根本、最主要的理论特征是
A、一次用量B、2日用量C、3日用量D、5日用量E、7日用量普通处方每张一般不得超过
结核性病变的特征性细胞是
桑螵蛸、覆盆子的功效共同点是
注册会计师在()的情况下承办审计或其他鉴证业务,不违反职业道德的要求。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
ITU标准OC-12的传输速率为()。
最新回复
(
0
)