首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内处处可导,且满足f’(x)≠0.证明对任何x0∈(a,b)一定存在x1,x2∈(a,b)使得f(x1)>f(x0)>f(x2).
设f(x)在(a,b)内处处可导,且满足f’(x)≠0.证明对任何x0∈(a,b)一定存在x1,x2∈(a,b)使得f(x1)>f(x0)>f(x2).
admin
2019-02-20
47
问题
设f(x)在(a,b)内处处可导,且满足f’(x)≠0.证明对任何x
0
∈(a,b)一定存在x
1
,x
2
∈(a,b)使得f(x
1
)>f(x
0
)>f(x
2
).
选项
答案
假设结论不正确,则存在x
0
∈(a,b)使得对任何x∈(a,b),要么f(x)≥f(x
0
)(这时f(x
0
)为极小值);要么f(x)≤f(x
0
)(这时f(x
0
)为极大值).因此若结论不正确,则f(x)必在(a,b)内某点x
0
处取得极值.由于f(x)在(a,b)内处处可导,由费马定理可知f’(x
0
)=0,但是对一切x∈(a,b)有f’(x)≠0,这就产生了矛盾.因此结论正确.
解析
f(x
1
)>f(x
0
)>f(x
2
)的含义是既有函数值小于f(x
0
)的点又有函数值大于f(x
0
)的点.若这个结论不正确,则在(a,b)内的函数值要么处处不小于f(x
0
),要么处处不大于f(x
0
),这时f(x
0
)就是极值.由费马定理得出f’(x
0
)=0,此与条件矛盾.
转载请注明原文地址:https://www.kaotiyun.com/show/VUP4777K
0
考研数学三
相关试题推荐
设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵.(1)验证α1是矩阵B的特征向量,并求B的全部特征值和特征向量.(2)求矩阵B.
设f(x)、g(x)在[一a,a](a>0)上连续,g(x)为偶函数,且满足f(x)+f(一x)=A(A为常数).(1)试证:∫—aaf(x)g(x)dx=A∫0ag(x)dx;(2)计算:|sinx|arctanexdx.
函数x3+y3-3x2-3y2的极小值点是()
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
交换积分次序:∫01∫x23-xf(x,y)=dy=___________.
设A,B分别为m×n及n×s矩阵,且AB=0.证明:r(A)+r(B)≤n.
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且=M.证明:f’(x0)=M.
交换积分次序并计算∫0adx∫0x
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性.①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示.②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也不可用α1,α2
该极限式为1∞型未定式,可直接利用重要极限公式[*]进行计算,[*]
随机试题
用可变分区方式管理主存时,假定主存中按地址顺序依次有五个空闲区,空闲区的大小依次为32KB、10KB、5KB、228KB、100KB。现有五个作业J1、J2、J3、J4,J5,它们各需主存量为1KB、10KB、108KB、28KB,115
简述电接点水位计的工作原理。
《建设项目环境保护管理条例》规定,提供技术服务的机构不得与负责审批建设项目环境影响评价文件的环境保护行政主管部门和其他有关审批部门有任何利益关系,保证环境影响评价工作的()。
君乐公司在甲银行开立基本存款账户。2016年7月,君乐公司发生的结算业务如下:(1)7月3日,君乐公司与乙银行签订短期借款合同后,持相关开户资料向乙银行申请开立了一般存款账户。(2)7月10日,君乐公司出纳王某填写一张转账支票(以下简称A支票)交采购员
童话《四季的风》通过描写富有同情心的“风”在春夏秋冬四季照顾和安慰一个长期卧病的苦孩子来赞扬人与人之间的友谊和爱,它的作者是()。
首次区分公罪与私罪的封建成文法典是()。
所谓“治理”,一个很重要的方面是“建设”,这是社会治安综合治理工程的一项积极措施。因此,应是边建边治,建中有治。()
FBI
Animportantfactorofleadershipisattraction.Thisdoesnotmeanattractivenessintheordinarysense,forthatisabornqua
项目团队中原来有5名成员,后来又有4人加入项目。与之前相比项目成员之间的沟通渠道增加()条。
最新回复
(
0
)