首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
An×n(α1,α2,…,αn),Bn×n=(α1+α2,α2+α3,…,αn+α1),当r(A)=n时,方程组BX=0是否有非零解?
An×n(α1,α2,…,αn),Bn×n=(α1+α2,α2+α3,…,αn+α1),当r(A)=n时,方程组BX=0是否有非零解?
admin
2018-08-12
69
问题
A
n×n
(α
1
,α
2
,…,α
n
),B
n×n
=(α
1
+α
2
,α
2
+α
3
,…,α
n
+α
1
),当r(A)=n时,方程组BX=0是否有非零解?
选项
答案
方法一 B=(α
1
+α
2
,α
2
+α
3
,…,α
n
+α
1
)=(α
1
,α
2
,…,α
n
)[*] 由r(A)=n可知|A|≠0,而|B|=|A|[*] =|A|[1+(-1)
n+1
], 当n为奇数时,|B|≠0,方程组BX=0只有零解; 当n为偶数时,|B|=0,方程组BX=0有非零解. 方法二 BX=0[*]x
1
(α
1
+α
2
)+x
2
(α
2
+α
3
)+…+x
n
(α
n
+α
1
)=0 [*](x
1
+x
n
)α
1
+(x
1
+x
2
)α
2
+…+(x
n-1
+x
n
)α
n
=0, 因为α
1
,α
2
,…,α
n
线性无关, 所以[*]=1+(-1)
n+1
, 当n为奇数时,|B|≠0,方程组BX=0只有零解; 当n为偶数时,|B|=0,方程组BX=0有非零解.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/VQj4777K
0
考研数学二
相关试题推荐
=_______
设C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P引平行于x轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=x2,C1的方程是y=x2,求曲线C2的方程.
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)-f(x)=0在(0,1)内有根.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.
设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是ξ1=[2,2,一1]T,ξ2=[一1,2,2]T,ξ3=[2,一1,2]T.又β=[1,2,3]T,计算:(1)Anξ1;(2)Anβ.
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),
曲线的曲率及曲率的最大值分别为______.
计算定积分
设D由直线x=0,y=0,x+y=1围成,已知∫01f(x)dx=∫01xf(x)dx,则f(x)dxdy=()
随机试题
这一组交通警察手势是什么信号?
皮肤癣菌只能侵染皮肤是由于
感冒的治疗原则是()
A、重量法B、硝酸银滴定法C、紫外-可见分光光度法D、气相色谱法E、高效液相色谱法山茱萸中马钱苷的含量测定采用
下列善治肺胃火盛所致的口舌生疮的实火证类非处方中成药是
下列关于盐的说法错误的是:
解放思想,实事求是,是我们党的思想路线。搞革命,要解放思想,实事求是;建设社会主义,也要解放思想,实事求是。“文化大革命”结束后,为了冲破禁锢,打开局面,邓小平以马克思主义者的非凡胆略和科学态度,着手解决党的思想路线问题,作出了一系列努力,重新确立了马克思
下列对HiperLAN/2无线局域网标准的描述中,错误的是()。
WhattheHeckDoesVincentvanGoghHaveToDoWithInternetMarketing?[A]Nothingandeverything!Tuckeddiscreetlyawayonmy
A、Theyliveahappyandhealthylife.B、Theyarefamousfortheirdiligence.C、Theyworkhardoutdoorsinthefieldsandeatlit
最新回复
(
0
)