首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列方程的通解: (Ⅰ)y’=[sin(lnx)+cos(lnx)+a]y; (Ⅱ)xy’=
求下列方程的通解: (Ⅰ)y’=[sin(lnx)+cos(lnx)+a]y; (Ⅱ)xy’=
admin
2018-06-27
61
问题
求下列方程的通解:
(Ⅰ)y’=[sin(lnx)+cos(lnx)+a]y;
(Ⅱ)xy’=
选项
答案
(Ⅰ)属于变量可分离的方程.分离变量改写为 [*]=(sinlnx+coslnx+a)dx. 两端求积分,由于∫sin(lnx)dx=xsin(lnx)-∫xcos(lnx).[*]dx=xsin(lnx)-∫cos(lnx)dx, 所以通解为ln|y|=xsin(lnx)+ax+C
1
,或y=Ce
xsin(lnx)+ax
,其中C为任意常数. (Ⅱ)属齐次方程.令y=xu,并且当x>0时,原方程可化为 [*] 两端求积分,则得arcsinu=lnx+C,即其通解为arcsin[*]=lnx+C,其中C为任意常数. 当x<0时,上面的方程变为[*],其通解应为arcsin[*]=-ln|x|+C,其中C为任意常数. 所得通解公式也可统一为y=|x|sin(ln|x|+C).此处还需注意,在上面作除法过程中丢掉了两个特解u=±1,即y=±x.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Uik4777K
0
考研数学二
相关试题推荐
求微分方程y"+4y’+4y=e-2x的通解.
求微分方程y"+5y’+6y=2e-x的通解.
没A是n阶反对称矩阵,证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;
设xOy平面第一象限中有曲线F:y=y(x),过点y’(x)>0.M(x,y)为F上任意一点,满足:弧段的长度与点M处厂的切线在x轴上的截距之差为求曲线F的表达式.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是
按第一行展开[*]得到递推公式D5一D4=-x(D4-D3)一…=-x3(D2-D1).由于[*]=1一x+x2,D1=1一x,于是得[*]容易推出D5=一x5+x4一x2+D2=一x5+x4一x3+x2一x+1.
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)-f(A)=f’(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
随机试题
关于PCR与体内DNA生物合成正确的是:()
在英国权威的科学杂志《自然》上刊登的一篇美国科学家的论文说,研究人员在实验室里把抗虫害转基因玉米“BT玉米”的花粉撒在苦苣菜叶上,然后让蝴蝶幼虫啃食这些菜叶。四天之后,有44%的幼虫死亡,活着的幼虫身体也较小,而且没有精神。而另一组幼虫啃食撒有普通玉米花粉
透水率是垂直于土工织物平面流动的水,在水位差等于()时的渗透流速。
W工程项目采用了固定单价施工合同。工程招标文件参考资料中提供的用砂地点距工地4km。但是开工后,检查该砂质量不符合要求,承包商只得从另一距工地20km的供砂地点采购。而在一个关键工作面上又发生了4项临时停工事件:事件1:5月20目至5月26日承包
工期索赔的计算方法有()。
一般在年终决算时,或单位发生撤销、合并、改变隶属关系、重组、股份制改造时,实行的清查是()。
根据下面材料,回答下列题目:××短期国库券(被认为是无风险的)的收益率为5%。假定一份资产组合,其贝塔值为1的市场要求的期望收益率是12%。β值为0的股票的期望收益率为( )。
一般纳税人发生下列经营活动中,不得开具增值税专用发票的有()。(2017年)
根据以下情境材料,回答问题。2015年,全国报告发生因滥用毒品导致暴力攻击、自杀自残、毒驾肇事等极端案件事件336起,查获涉案吸毒人员349名,破获吸毒人员引发的刑事案件17,4万起,全国每年因吸毒造成的直接经济损失及禁毒相关投入超过万亿元。根据以下毒品
下列行为中,属于行政裁决的是哪些?()
最新回复
(
0
)