首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是( )
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是( )
admin
2018-01-26
56
问题
已知α
1
,α
2
,α
3
,α
4
是3维非零向量,则下列命题中错误的是( )
选项
A、如果α
4
不能由α
1
,α
2
,α
3
线性表出,则α
1
,α
2
,α
3
线性相关。
B、如果α
1
,α
2
,α
3
线性相关,α
2
,α
3
,α
4
线性相关,那么α
1
,α
2
,α
4
也线性相关。
C、如果α
3
不能由α
1
,α
2
线性表出,α
4
不能由α
2
,α
3
线性表出,则α
1
可以由α
2
,α
3
,α
4
线性表出。
D、如果秩R(α
1
,α+α,α+α)=R(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
),则α
4
可以由α
1
,α
2
,α
3
线性表出。
答案
B
解析
设α
1
=(1,0,0)
T
,α
2
=(0,1,0)
T
,α
3
=(0,2,0)
T
,α
4
=(0,0,1)
T
,可知(B)不正确。应选(B)。
关于(A):用其逆否命题判断。若α
1
,α
2
,α
3
线性无关,则α
1
,α
2
,α
3
,α
4
必线性相关(因为n+1个n维向量必线性相关),所以α
4
可由α
1
,α
2
,α
3
线性表出。
关于(C)由已知条件,有
(Ⅰ)R(α
1
,α
2
)≠R(α
1
,α
2
,α
3
),(Ⅱ)R(α
2
,α
3
)≠R(α
2
,α
3
,α
4
)。
若R(α
2
,α
3
)=1,则必有R(α
1
,α
2
)=R(α
1
,α
2
,α
3
),与条件(Ⅰ)矛盾,故必有R(α
2
,α
3
)=2。
那么由(Ⅱ)知R(α
2
,α
3
,α
4
)=3,从而R(α
1
,α
2
,α
3
,α
4
)=3。因此α
1
可以由α
2
,α
3
,α
4
线性表出。
关于(D):经初等变换有
(α
1
,α
1
+α
2
,α
2
+α
3
)→(α
1
,α
2
,α
2
+α
3
)→(α
1
,α
2
,α
3
),
(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
)→(α
4
,α
1
,α
2
,α
3
)→(α
1
,α
2
,α
3
,α
4
),
从而R(α
1
,α
2
,α
3
)=R(α
1
,α
2
,α
3
,α
4
),因此α
4
可以由α
1
,α
2
,α
3
线性表出。
转载请注明原文地址:https://www.kaotiyun.com/show/Ucr4777K
0
考研数学一
相关试题推荐
设f(x)在(一1,1)内二阶连续可导,且f"(x)≠0.证明:(1)对(一1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];(2)
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,=1,f(1)=0.证明:(1)存在,使得f(η)=η;(2)对任意的k∈(一∞,+∞),存在ξ∈(0,η),使得f’(ξ)一k[f(ξ)一ξ]=1.
设=A,证明:数列{an}有界.
设a>0,x1>0,且定义xn+1=(n=1,2,…),证明:存在并求其值.
设X是任一非负(离散型或连续型)随机变量,已知的数学期望存在,而ε>0是任意实数,证明:不等式
设{Xn}是一随机变量序列,Xn的密度函数为:试证:
微分方程y’+ytanx=cox的通解为y=_________.
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
当x>0时,曲线y=
设A=(I)计算行列式|A|;(Ⅱ)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
随机试题
用等离子弧在不开坡口的情况下,可以单面焊接()mm厚的奥氏体型不锈钢板一次成形,而且焊接性能良好。
()的持有人只有在约定的到期日才有权买卖标的证券。
狭义的教育制度是指()。
从所给四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
《继承法》第16条第2款规定:“公民可以立遗嘱将个人财产指定由法定继承人的一人或者数人继承。”从法的规范和作用看,该项规定属于下列哪种情况?()
[2002年MBA真题]最近10年,地震、火山爆发和异常天气对人类造成的灾害比数十年前明显增多,这说明,地球正变得对人类愈来愈充满敌意和危险。这是人类在追求经济高速发展中因破坏生态环境而付出的代价。以下哪项如果为真,最能削弱上述论证?
A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分D.条件(1)充分,条件(2)也充分E.条件(1)和(2)单独都不充分,两个条件联合起来也不充分
Theearliestcontroversiesabouttherelationshipbetweenphotographyandartcenteredonwhetherphotographer’sfidelitytoapp
Appleishardlyaloneinthehigh-techindustrywhenitcomestoduffgadgetsandunhelpfulcallcentres,butinotherrespects
Itiswellknownthatteenageboystendtodobetter(1)_____maththangirls,thatmalehighschoolstudentsaremorelikelytha
最新回复
(
0
)