首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(0,+∞)上具有二阶导数,且f”(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
设函数f(x)在(0,+∞)上具有二阶导数,且f”(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
admin
2016-06-27
109
问题
设函数f(x)在(0,+∞)上具有二阶导数,且f”(x)>0,令u
n
=f(n)(n=1,2,…),则下列结论正确的是( )
选项
A、若u
1
>u
2
,则{u
n
}必收敛.
B、若u
1
>u
2
,则{u
n
}必发散.
C、若u
1
<u
2
,则{u
n
}必收敛.
D、若u
1
<u
2
,则{u
n
}必发散.
答案
D
解析
本题依据函数f(x)的性质选取特殊的函数数列,判断数列{u
n
=f(n)}的敛散性.
取f(x)=x
2
,f”(x)=2>0,u
1
=1<4=u
2
,而f(n)=n
2
发散,则可排除C;故选D.
事实上,若u
1
<u
2
,则
=f’(ξ
1
)>0.而对任意x∈(ξ
1
,+∞),由f”(x)>0,所以f’(x)>f’(ξ
1
)>ξ
1
∈(1,2)>0,对任意ξ
2
∈(ξ
1
,+∞),f(x)=f(ξ
1
)+f’(ξ
2
)(x一ξ
1
)→+∞(x→+∞).
故选D.
转载请注明原文地址:https://www.kaotiyun.com/show/UUT4777K
0
考研数学三
相关试题推荐
记者在采访2015年诺贝尔生理学或医学奖的中国女药学家屠呦呦时问她:“你在小鼠和猴子身上测试了青蒿素,证明它是有效的之后,你自己也服了药。你害怕吗?”屠呦呦答:“我们担心药物是否安全。我和两位同事服了药,表明药不会死人。我认为这是我作为药物化学家的责任和工
戊戌政变后,新政大部分被废除,保留下来的是()。
商品经济产生和存在的决定性条件是()。
俗话说:“靠山吃山,靠水吃水”。生活在平原和海边的人们,决不会以林业为主业,而生活在高原山地的人们,也决不会以航运和捕鱼为主业。由于自然条件的种种差异,美洲大陆和亚洲大陆的种、养业各有特点,形成了不同的发展道路。由美洲和亚洲的发展差异可以看出(
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
设f(x)在[a,b]上可积,又,证明φ(x)是[a,b]上的连续函数.
设u=f(x,z),而z=z(x,y)是由方程z=x+yψ(z)所确定的隐函数,其中f有连续偏导数,而ψ有连续导数,求du.
设u(x,y,z),v(x,y,z)是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,依次表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数.证明:其中∑是空间闭区域Ω的整个边界曲面.
设z=xf(y/x)+(x-1)ylnx,其中f是任意二阶可微函数,求证:
设l1=(1,1),l2=(-1,1),分别求出函数z=xy在点(0,0)处沿方向l1和方向l2的二阶方向导数.
随机试题
女性,35岁。5个月来间歇性胸背剧痛。体检:右侧下肢肌力Ⅳ度伴膝、踝反射亢进,Babinski征阳性。右踝振动觉消失,左胸下痛温觉消失。其余神经系统无异常。胸椎平片无异常。可能诊断为
万物由天而生,因而历朝历代封建帝王建起了祭天、祭祖、祭社稷的坛庙建筑。体现了中国古代()的传统思想。
交感性眼炎的病因未明,但其诱因是
传染病的治疗包括
痰标本抗酸染色呈红色、细长的杆菌,最可能为
关于浊点的叙述正确的是
关于牙周炎症的活动性破坏的描述,哪一项不正确
甲、乙、丙、丁四家施工单位的基本情况如下:某招标项目的资格预审要求:投标人必须为拥有注册资金3000万元以上的一级总承包企业,并且要求具有一级建造师资格证书的人员在10人以上。试问,下列联合体中能够通过资格预审的是()。
贷款业务有多种分类标准,下列属于按照客户类型划分贷款的是()。
Whomdoyouthinkthewomanwasangrywith?
最新回复
(
0
)