首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0. 证明:(1)在(a,b)内至少存在一点ξ,使得fˊ(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,且η≠ξ,使得fˊˊ(η)=f(η
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0. 证明:(1)在(a,b)内至少存在一点ξ,使得fˊ(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,且η≠ξ,使得fˊˊ(η)=f(η
admin
2016-09-13
65
问题
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.
证明:(1)在(a,b)内至少存在一点ξ,使得fˊ(ξ)=f(ξ);
(2)在(a,b)内至少存在一点η,且η≠ξ,使得fˊˊ(η)=f(η).
选项
答案
(1)由加强型的积分中值定理知,至少存在一点c∈(a,b),使得 f(c)=[*]∫
a
b
f(x)dx=0. 设G(x)=e
-x
f(x),则G(x)在[a,b]上连续,在(a,b)内可导,且G(a)=G(b)=G((c)=0,Gˊ(x)=e
-x
fˊ(x)-e
-x
f(x)=e
-x
[fˊ(x)-f(x)].由罗尔定理知,分别存在ξ
1
∈(a,c)和ξ
2
∈(c,b),使得Gˊ(ξ
1
)=Gˊ(ξ
2
)=0,从而fˊ(ξ
1
)=f(ξ
1
),fˊ(ξ
2
)=f(ξ
2
). (2)设F(x)=e
x
[fˊ(x)-f(x)],则F(x)在[a,b]上连续,在(a,b)内可导,且F(ξ
1
)=F(ξ
2
)=0, 则 Fˊ(x)=e
x
[fˊˊ(x)-fˊ(x)]+e
x
[fˊ(x)-f(x)]=e
x
[fˊˊ(x)-f(x)]. 对F(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,即存在η∈(ξ
1
,ξ
2
),使得Fˊ(η)=0,故有 fˊˊ(η)=f(η),且η≠ξ
i
(i=1,2).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/URT4777K
0
考研数学三
相关试题推荐
[*]
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
判断下列级数的敛散性
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
(1)怎样建立向量a与有序数组ax、ay、az之间的一一对应关系?数ax、ay、az的几何意义是什么?(2)分别叙述两个向量a、b平行和垂直的充要条件,并给出充要条件的坐标表示式.(3)叙述三个向量a、b、c共面的充要条件,并给出充要条件的坐标表示式.
设函数y=f(x)有三阶连续导数,其图形如图29所示,其中l1与l2分别是曲线在点(0,0)与(3,2)处的切线.试求积分
求密度为常数μ的均匀半球壳的质点坐标及对于z轴的转动惯量.
若f(x)在x=0点有二阶连续导数,且x→0时(x)一x与x一sinx等价,则().
随机试题
终身教育是人生各阶段当中所受各种教育的总和,也是人所受的不同类型教育的总和。()
己知事件A与B相互独立,=0.4,=0.5,则P(A∪B)等于()。
工资性补贴包括()。
竣工验收工作由()负责。
财务会计报告主要包括()。
下列属于首次申报报关员注册所应具备的条件的是()。
1977年出生的姜帆已过而立之年,2007年“十一”国庆节,他终于和谈了多年马拉松恋爱的女友晓芸举行了婚礼。同时,随着收入的提高,每月在支付基本生活开销和还房贷之余,姜帆感觉手头的资金有些宽裕,想作一个理财计划,经过初步沟通面谈后,你获得了以下家庭、职业与
下列因素变动会影响债券到期收益率的有()。
下列选项中,在立卷范围之列的是()。
GrowthSecretsOfAlaska’sMysteriousFieldofLakesThethousandsofovallakesthatdotAlaska’sNorthSlopearesomeoft
最新回复
(
0
)