首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Trust Me, I’m a Robot [A]With robots now emerging from their industrial cages and moving into homes and workplaces, roboticists
Trust Me, I’m a Robot [A]With robots now emerging from their industrial cages and moving into homes and workplaces, roboticists
admin
2016-12-18
34
问题
Trust Me, I’m a Robot
[A]With robots now emerging from their industrial cages and moving into homes and workplaces, roboticists are concerned about the safely implications beyond the factory floor. To address these concerns, leading robot experts have come together to try to find ways to prevent robots from harming people. Inspired by the Pugwash Conferences—an international group of scientists, academics and activists founded in 1957 to campaign for the non-proliferation of nuclear weapons—the new group of robo-ethicists met earlier this year in Genoa, Italy, and announced their initial findings in March at the European Robotics Symposium in Palermo, Sicily.
[B]"Security and safety are the big concerns," says Henrik Christensen, chairman of the European Robotics Network at the Swedish Royal Institute of Technology in Stockholm. Should robots that are strong enough or heavy enough to crush people be allowed into homes? Is "system malfunction" a justifiable defence for a robotic fighter plane that contravenes(违反)the Geneva Convention and mistakenly fires on innocent civilians?
[C]"These questions may seem hard to understand but in the next few years they will become increasingly relevant," says Dr. Christensen. According to the United Nations Economic Commission for Europe’s World Robotics Survey, in 2002 the number of domestic and service robots more than tripled, nearly surpassing their industrial counterparts. By the end of 2003 there were more than 600,000 robot vacuum cleaners and lawn mowers—a figure predicted to rise to more than 4m by the end of next year. Japanese industrial firms are racing to build humanoid robots to act as domestic helpers for the elderly, and South Korea has set a goal that 100% of households should have domestic robots by 2020. In light of all this, it is crucial that we start to think about safety guidelines now, says Dr. Christensen Stop right there
[D]So what exactly is being done to protect us from these mechanical menaces? "Not enough," says Blay Whitby. This is hardly surprising given that the field of "safety-critical computing" is barely a decade old, he says. But things are changing, and researchers are increasingly taking an interest in trying to make robots safer. One approach, which sounds simple enough, is try to program them to avoid contact with people altogether. But this is much harder than it sounds. Getting a robot to navigate across a cluttered room is difficult enough without having to take into account what its various limbs or appendages might bump into along the way.
[E]"Regulating the behaviour of robots is going to become more difficult in the future, since they will increasingly have self-learning mechanisms built into them," says Gianmarco Veruggio. "As a result, their behaviour will become impossible to predict fully," he says, "since they will not be behaving in predefined ways but will learn new behaviour as they go."
[F]Then there is the question of unpredictable failures. What happens if a robot’s motors stop working, or it suffers a system failure just as it is performing heart surgery or handing you a cup of hot coffee? You can, of course, build in redundancy by adding backup systems, says Hirochika Inoue. But this guarantees nothing, he says. "One hundred per cent safety is impossible through technology," says Dr. Inoue. This is because ultimately no matter how thorough you are, you cannot anticipate the unpredictable nature of human behaviour, he says. Or to put it another way, no matter how sophisticated your robot is at avoiding people, people might not always manage to avoid it, and could end up tripping over it and falling down the stairs.
Legal problems
[G]In any case, says Dr. Inoue, the laws really just summarize commonsense principles that are already applied to the design of most modern appliances, both domestic and industrial. Every toaster, lawn mower and mobile phone is designed to minimize the risk of causing injury—yet people still manage to electrocute(电死)themselves, lose fingers or fall out of windows in an effort to get a better signal. At the very least, robots must meet the rigorous safety standards that cover existing products. The question is whether new, robot-specific rules are needed—and, if so, what they should say.
[H]"Making sure robots are safe will be critical," says Colin Angle of iRobot, which has sold over 2m "Roomba" household-vacuuming robots. But he argues that his firm’s robots are, in fact, much safer than some popular toys. "A radio-controlled car controlled by a six-year old is far more dangerous than a Roomba," he says. If you tread on a Roomba, it will not cause you to slip over: instead, a rubber pad on its base grips the floor and prevents it from moving. "Existing regulations will address much of the challenge," says Mr. Angle. "I’m not yet convinced that robots are sufficiently different that they deserve special treatment."
[I]Robot safety is likely to surface in the civil courts as a matter of product liability. "When the first robot carpet-sweeper sucks up a baby, who will be to blame?" asks John Hallam, a professor at the University of Southern Denmark in Odense. If a robot is autonomous and capable of learning, can its designer be held responsible for all its actions? Today the answer to these questions is generally "yes". But as robots grow in complexity it will become a lot less clear cut, he says.
[J]"Right now, no insurance company is prepared to insure robots," says Dr. Inoue. But that will have to change, he says. Last month, Japan’s Ministry of Trade and Industry announced a set of safety guidelines for home and office robots. They will be required to have sensors to help them avoid collisions with humans: to be made from soft and light materials to rninimize harm if a collision does occur: and to have an emergency shut-off button. This was largely prompted by a big robot exhibition held last summer, which made the authorities realize that there are safety implications when thousands of people are not just looking at robots, but mingling with them, says Dr. Inoue.
[K]However, the idea that general-purpose robots, capable of learning, will become widespread is wrong, suggests Mr. Angle. It is more likely, he believes, that robots will be relatively dumb machines designed for particular tasks. Rather than a humanoid robot maid, "it’s going to be a heterogeneous(不同种类的)swarm of robots that will take care of the house," he says.
A university professor points out that the complexity of robots may result in the ambiguous product liability.
选项
答案
I
解析
根据题目中的university professor、complexity和product liability定位至I段。该段开头提出机器人可能引发的产品责任应由谁来负,最后一句指出随着机器人变得越来越复杂,答案就不那么明确了。题目信息出自本段,ambiguous是原文less clear cut的近似表达。
转载请注明原文地址:https://www.kaotiyun.com/show/UDF7777K
0
大学英语六级
相关试题推荐
Overacenturyago,AlfredRussellWallacewrotethat"weliveinazoologicallyimpoverishedworld,fromwhichallthehugest,
Thetraditionaldistinctionbetweenproductsthatsatisfyneedsandthosethatsatisfywantsisnolongeradequatetodescribec
Todaynanotechnology(纳米技术)isstillinaformativephase.Yetitismaturingrapidly.Between1997and2005,investmentinnanote
Todaynanotechnology(纳米技术)isstillinaformativephase.Yetitismaturingrapidly.Between1997and2005,investmentinnanote
Thereis,ofcourse,noreasoninlogicwhyatransactionthatinvolvesmovinggoodsacrossabordershouldbetreateddifferent
Thereis,ofcourse,noreasoninlogicwhyatransactionthatinvolvesmovinggoodsacrossabordershouldbetreateddifferent
A、Beingmorereliable.B、Movingtoanewplace.C、Takingprideinoneself.D、Gettingmoreinvolved.D
A、Movingallthecatstootherpartsoftheworld.B、Keepingcatsinside24hoursaday.C、Keepingferociousanimalstokillcat
A、Theeconomygrowth.B、Thenewequipment.C、Theindustrialization.D、Thesalespromotion.C事实细节题。本题问的是什么因素使大众也能买得起手表。对话中男士提到了工业
随机试题
下列哪些离子的流动参与窦房结动作电位的形成
诊断早期肺源性心脏病的主要依据是
护士若不能较好把握病人不良情绪的_______,便无法选择较适宜的_______。
下图为非洲南部区域简图。据此回答下列问题。造成E处热带沙漠气候沿海岸线延伸2000多千米的主要洋流是()。
量变质变规律指出了事物发展的()。
甲对某危害结果没有阻止其发生的义务,如果该危害结果发生,甲的不作为行为()。
赐命、册封
多元系统理论的来源不包括()。
某工厂对一批产品进行了抽样检查.下图是根据抽样检查后的产品净重(单位为g)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中
ForestsincountrieslikeBrazilandtheCongogetalotofattentionfromenvironmentalists,anditiseasytoseewhy.SouthA
最新回复
(
0
)