首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2一α3=(2,0,一5,4)T,α2+2α3=(3,l2,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2一α3=(2,0,一5,4)T,α2+2α3=(3,l2,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=
admin
2014-02-06
93
问题
设矩阵A是秩为2的4阶矩阵,又α
1
,α
2
,α
3
是线性方程组Ax=b的解,且α
1
+α
2
一α
3
=(2,0,一5,4)
T
,α
2
+2α
3
=(3,l2,3,3)
T
,α
3
—2α
1
=(2,4,1,一2)
T
,则方程组Ax=b的通解x=
选项
A、
B、
C、
D、
答案
A
解析
由于n一r(A)=4—2=2,故方程组Ax=b的通解形式应为α+k
1
η
1
+k
2
η
2
.这样可排除C,D.因为A
(α
2
+2α
3
)=b,A(α
3
—2α
1
)=一b,所以A中(1,4,1,1)
T
和B中(一2,一4,一1,2)
T
都是方程组Ax=b的解.A和B中均有(2,2,一2,1)
T
,因此它必是Ax=0的解.只要检验(1,一4,一6,3)
T
和(1,8,2,5)
T
哪一个是Ax=0的解就可以了.由于3(α
1
+α
2
一α
3
)一(α
2
+2α
3
)=3(α
1
—α
3
)+2(α
2
一α
3
)是Ax=0的解,所以(3,一12,一18,9)
T
是Ax=0的解.那么(1,一4,一6,3)
T
是Ax=0的解.故应选A.
转载请注明原文地址:https://www.kaotiyun.com/show/U7F4777K
0
考研数学三
相关试题推荐
结合材料回答问题:材料1钟南山建议:“我总的看法,就是没有特殊的情况,不要去武汉。”2020年1月18日钟南山院士从深圳抢救完相关病例回到广州,当天下午还在广东省卫健委开会时,便接到通知要他马上赶往武汉。当天的航班已经买不到机票了,助手
生产价格是价值的转化形式,生产价格和价值之间存在的差别是
毛泽东在《论十大关系》中论述的第一大关系,即工业化的问题,当时所讲的工业化道路问题,主要是指
列宁对辩证唯物主义物质范畴的定义是通过()。
2022年3月3日晚,《感动中国2021年度人物颁奖盛典》在中央广播电视总台播出。“你觉得,你和我们一样,我们觉得,是的,但你又那么不同寻常。从无声里突围,你心中有嘹亮的号角。新时代里,你有更坚定的方向。先飞的鸟,一定想飞得更远。迟开的你,也鲜花般怒放。”
1949年9月21日至30日,中国人民政治协商会议第一届全体会议在北平举行。大会通过的在当时起着临时宪法作用的文件是
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
把x→0+时的无穷小排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列顺序是_________.
设随机变量X服从参数为λ的指数分布,则
随机试题
肝阳上亢证与肝火上炎证的共同表现有()(2006年第119题)
A.粪链球菌B.单核增生李斯特菌C.铜绿假单胞菌D.志贺菌E.霍乱弧菌人类皮肤上的正常菌群是
王先生,因颅脑外伤急诊入院,病人烦躁不安,面色苍白,四肢厥冷,血压76/46mmHg,脉搏110次/分。王先生痊愈出院时,处理床单位不正确的方法是
以下选项中不属于城镇道路路基工程施工流程的是()。
汇总记账凭证账务处理程序适用于规模较小、经济业务较少的单位。()
甲、乙、丙、丁四人进行围棋比赛,每人都要与其他三人各赛一盘。比赛在两张棋盘上同时进行,每天每人只赛一盘。第一天甲与丙比赛,第二天丙与丁比赛,第三天乙与()比赛。
在诊断睾丸鞘膜积液时需要与哪些疾病相鉴别
求微分方程的通解.
微硬盘是一种由超小型笔记本和数码相机领域发展而来的外部存储设备,下面关于微硬盘的叙述中,错误的是()。
NewresearchfromtheUnitedStatessuggeststhatthemillennia-oldtherapyofyogacouldbenefitmillionsofpeoplewhosuffe
最新回复
(
0
)