首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设x∈(0,1),证明: (Ⅰ)(1+x)ln2(1+x)<x2;
设x∈(0,1),证明: (Ⅰ)(1+x)ln2(1+x)<x2;
admin
2018-04-14
72
问题
设x∈(0,1),证明:
(Ⅰ)(1+x)ln
2
(1+x)<x
2
;
选项
答案
(Ⅰ)令φ(x)=x
2
-(1+x)ln
2
(1+x),则 φ’(x)=2x-ln
2
(1+x)-2ln(1+x), φ"(x)=[*][x-ln(1+x)], φ"’(x)=[*]>0(0<x<1), [*]φ"(x)在(0,1)内单调递增,φ"(x)>φ"(0)=0(0<x<1), [*]φ’(x)在(0,1)内单调递增,φ’(x)>φ’(0)=0(0<x<1), [*]φ(x)在(0,1)内单调递增,φ(x)>φ(0)=0(0<x<1), 即(1+x)ln
2
(1+x)<x
2
。 [*] 由(Ⅰ),f’(x)<0(0<x<1)[*]f(x)在(0,1)单调减[*]f(1)<f(x)<f(0+)(0<x<1),而f(1)=[*]-1,且 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/U3k4777K
0
考研数学二
相关试题推荐
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设函数g(x)可微,h(x)=e1+g(x),hˊ(1)=1,gˊ(1)=2,则g(1)等于().
设函数f(x)在[0,1]上连续,(0,1)内可导,且证明在(0,1)内存在一点,使fˊ﹙C﹚=0.
设函数f(x)=x.tanx.esinx,则f(x)是().
考察一元函数f(x)的下列四条性质:①f(x)在区问[a,b]上连续②f(x)在区间[a,b]上可积③f(x)在区间[a,b]上存在原函数④f(x)在区间[a,b]上可导若用P→Q表示可由性质P推出性质Q,则有().
求曲线x3-xy+y3=1(x≥0,y≥0)上的点到坐标原点的最长距离与最短距离.
已知曲线的极坐标方程是r=1-cosθ,求该曲线上对应于θ=π/6处的切线与法线的直角坐标方程.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’’(x)≤0,且(1)=f’(1)=1,则().
设z=f(2x-y,ysinx),其中f(u,v)具有连续的二阶偏导数,求
随机试题
中华人民共和国的成立标志着中国进入()
在Windows资源管理器的左窗格中的目录图标上,有“一”号的表示()。
女性,25岁,未婚,半年来乏力,面色苍白,1周来加重,既往有十二指肠溃疡病5年。化验血Hb75g/L,RBC3.5×1012/L,WBC8.5×109/L,PIT325×109/L。诊断为缺铁性贫血。(2007年)该患者最不适宜的处理是
按照国务院有关规定批准开工报告的建筑工程,因故不能按期开工或者中止施工的,应当及时向批准机关报告情况。其中因故不能按期开工超过()的,应当重新办理开工报告的批准手续。
(2009年)在空气中用波长为λ的单色光进行双缝干涉实验,观测到相邻明条纹间的间距为1.33mm,当把实验装置放在水中(水的折射率为1.33)时,则相邻明条纹的间距变为()mm。
城市热力管道在实施焊接前,应根据焊接工艺试验结果编写焊接工艺方案,包括以下主要内容:母材性能和焊接材料;焊接方法;焊接电流的选择;()。
下列关于夏普比率的说法中,不正确的是()。
证券公司、证券投资咨询机构及其人员提供证券投资顾问服务,应当忠实()利益。
领导者与众不同的特质有()。
ForthepeoplewhohavenevertraveledacrosstheAtlanticthevoyageisafantasy.Butforthepeoplewhocrossitfrequentlyo
最新回复
(
0
)