首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明: (Ⅰ)0≤∫axg(t)dt≤(x一a),x∈[a,b] (Ⅱ)∫aa+∫abg(t)dtf(x)dx≤∫abf(x)g(x)dx.
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明: (Ⅰ)0≤∫axg(t)dt≤(x一a),x∈[a,b] (Ⅱ)∫aa+∫abg(t)dtf(x)dx≤∫abf(x)g(x)dx.
admin
2021-01-25
129
问题
(2014年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:
(Ⅰ)0≤∫
a
x
g(t)dt≤(x一a),x∈[a,b]
(Ⅱ)∫
a
a+∫
a
b
g(t)dt
f(x)dx≤∫
a
b
f(x)g(x)dx.
选项
答案
(Ⅰ)由0≤g(x)≤1得 0≤∫
0
x
g(t)dt≤∫
0
x
dt=(x一a) x∈[a,b] (Ⅱ)令F(u)=∫
a
u
f(x)g(x)dx—∫
a
a+∫
a
u
g(t)dt
f(x)dx 只要证明F(b)≥0,显然F(a)=0,只要证明F(u)单调增,又 F’(u)=f(u)g(u)一f(a+∫
a
u
g(t)dt)g(u) =g(u)[f(u)一f(a+∫
a
u
g(t)dt)] 由(Ⅰ)的结论0≤∫
a
x
g(t)dt≤(x-a)知,a≤a+∫
a
x
g(t)dt≤x,即 a≤a+∫
a
u
g(t)dt≤u 又f(x)单调增加,则f(u)≥f(a+∫
a
u
g(t)dt),因此,F’(u)≥0,F(b)≥0. 故 ∫
a
a+∫
a
b
g(t)dt
f(x)dx≤∫
a
b
f(x)g(x)dx.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/TAx4777K
0
考研数学三
相关试题推荐
设A,B,C均为n阶矩阵,若AB=C,且曰可逆,则
下列矩阵中,正定矩阵是()
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
设函数f(x)在区间(-δ,δ)内有定义,若当x∈(-δ,δ)时,恒有丨f(x)丨≤x2,则x=0必是f(x)的
设常数λ>0,且级数
[2015年]设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0)=___________.
[2017年]已知矩阵则().
[2003年]设向量组(I):α1=[1,0,2]T,α2=[1,1,3]T,α3=[1,-1,a+2]T和向量组(Ⅱ):β1=[1,2,a+3]T,β2=[2,1,a+6]T,β3=[2,1,a+4]T.试问:当a为何值时,向量组(I)与(Ⅱ)等价?
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,6)内可导,则存在ξ∈(a,b),使得f(b)—f(A)=f’(ξ)(b—a)。(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
设偶函数f(x)的二阶导数f"(x)在点x=0的一个邻域内连续,且f(0)=1.试证:级数绝对收敛.
随机试题
税务机关采取税收保全措施的期限,一般不得超过6个月,重大案件需要延长的,应报经批准。有权批准的税务机关是()。
我拿到序文,心中______,简直不相信自己的眼睛,我怎么敢接受先生如此高的______?想到先生一向对后生晚辈关爱扶持有加,我把这篇序言当成先生对我的鞭策、鼓励和督导,给我提出的一个奋斗目标。填入划横线部分最恰当的一项是()。
根据下面材料,回答问题。2006—2015年,全国重点城市平均地价增长率最高和最低的年份分别是()。
Thestudyofthephonicmediumoflanguageisdefinedas______.
在比较讲授法和讨论法的教学效果时,教师分别选用两个班级,一个班级采用讲授法,另一个班级运用讨论法,两班学生在智力、学业基础等方面尽量保持均衡,期末时测量其成绩差异。这种教育研究方法属于()
下列常可提示早期乳癌的是
WhichofthefollowingstatementsaboutFlowersandYeoistrue?WhichofthefollowingisNOTmentionedasacauseoftheprob
InAmerica,______iscompulsoryandfree.
ChineseAmericansI.EarlyimmigrationA.thefirstgroupofChineseimmigrants—cameto【T1】______【T1】______—becamethe【T2】__
TheteachertoldusyesterdaythatDecember25______ChristmasDay.
最新回复
(
0
)