首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Extremophiles’ are life forms that can live in
Extremophiles’ are life forms that can live in
admin
2014-10-30
72
问题
Extremophiles’ are life forms that can live in
Hello, everybody, and welcome to the sixth of our Ecology evening classes. Nice to see you all again. As you know from the programme, today I want to talk to you about some research that is pushing back the frontiers of the whole field of ecology. And this research is being carried out in the remoter regions of our planet... places where the environment is harsh and—until recently—it was thought that the conditions couldn’t sustain life of any kind. But, life forms are being found—and these have been grouped into what is now known as extremophiles—that is, organisms that can survive in the most extreme environments. And these discoveries may be setting a huge challenge for the scientists of the future, as you’ll see in a minute.
Now, the particular research I want to tell you about was carried out in Antarctica—one of the coldest and driest places on Earth. But a multinational team of researchers—from the US, Canada and New Zealand—recently discovered colonies of microbes in the soil there, where no one thought it was possible. Interestingly enough, some of the colonies were identified as a type of fungus called Beauveria Bassiana—a fungus that lives on insects. But where are the insects in these utterly empty regions of Antarctica? The researchers concluded that this was clear evidence that these colonies were certainly not new arrivals... they might’ve been there for centuries, or even millennia—possibly even since the last Ice Age! Can you imagine their excitement?
Now, some types of microbes had previously been found living just a few millimetres under the surface of rocks— porous, Antarctic rocks... but this was the first time that living colonies had been found surviving—erm—relatively deeply in the soil itself, several centimetres down in fact.
So, the big question is: how can these colonies survive there? Well, we know that the organisms living very near the rock surface can still be warmed by the sun, so they can survive in their own microclimate... and this keeps them from freezing during the day. But this isn’t the case for the colonies that are hidden under the soil.
In their research paper, this team suggested that the very high amounts of salt in the soil might be the clue—because this is what is preventing essential water from freezing. The team found that the salt concentration increased the deeper down they went in the soil. But while they had expected the number of organisms to be fewer down there, they actually found the opposite. In soil that had as much as 3,000 parts of salt per million, relatively high numbers of microbes were present—which seems incredible! But the point is that at those levels of salt, the temperature could drop to minus 56 degrees before frost would cause any damage to the organisms.
This relationship between microbes and salt—at temperatures way below the normal freezing point of water—is a really significant breakthrough. As you all know, life is dependent on the availability of water in liquid form, and the role of salt at very low temperatures could be the key to survival in these kinds of conditions. Now the process at work here is called supercooling—and that’s usually written as one word—but it isn’t really understood as yet, so, there’s a lot more for researchers to work on. However, the fact that this process occurs naturally in Antarctica, may suggest that it might occur in other places with similar conditions, including on our neighbouring planet, Mars. So, you can start to see the wider implications of this kind of research. In short, it appears to support the growing belief that extraterrestrial life might be able to survive the dry, cold conditions on other planets after all. Not only does this research produce evidence that life is possible there, it’s also informing scientists of the locations where it might be found. So all of this might have great significance for future unmanned space missions.
One specialist on Mars confirms the importance...
选项
A、new species.
B、ancient colonies.
C、types of insects.
答案
B
解析
转载请注明原文地址:https://www.kaotiyun.com/show/SvAO777K
本试题收录于:
雅思听力题库雅思(IELTS)分类
0
雅思听力
雅思(IELTS)
相关试题推荐
Inearly-twentieth-centuryEngland,itwasfashionabletoclaimthatonlyacompletelynewstyleofwritingcouldaddressaworl
Projectingtheideaofadistinctivefemaledemandinseventeenth-andeighteenth-centuryEnglandwasagroundbreakingdeparture
Youshouldspendabout40minutesonthistask.Writeaboutthefollowingtopic:Anumberoftertiarycoursesrequirest
Youshouldspendabout20minutesonthistask.Thechartbelowshowsthetotalnumberofminutes(inbillions)oftelephonecal
Somepeoplethinkthestudentsshouldtakethesubjectswhicharedecidedbythegovernmentintheuniversity.Othersthinkthat
Theuniversityshouldacceptequalnumbersofmaleandfemalestudentsineverysubject.Doyouagreeordisagree?
Somepeoplesaythatcensorshipshouldbecancelledcompletely.Doyouagreeordisagreewiththestatement?Giveyourspeci
Withthehelpoftechnology,studentsnowadayscanlearnmoreinformationandlearnitmorequickly.Doyouagreeordisagree?
ThechartsbelowgiveinformationontheagesofthepopulationsofYemenandItalyin2000andprojectionsfor2050.Summarise
随机试题
阅读《长亭送别》中的一段文字,回答下列小题:[端正好]碧云天,黄花地,西风紧,北雁南飞。晓来谁染霜林醉?总是离人泪。分析“晓来谁染霜林醉?总是离人泪”的修辞方法与含义。
实邪结聚,阻滞经络,气血不能外达的病机是
肠结核的好发部位是
酸蚀的作用不包括()
引起气道口径增大的因素是
在可比实例的权利性质与估价对象的权利性质相同的前提下,权益状况比较、调整的内容主要包括:()等影响房地产价格的因素。
对()的具体判断,应结合债权人的要求、企业所处竞争环境、行业发展趋势等具体条件而定。
根据《城乡规划法》第十六条的规定,下列关于审批的城乡规划的前置程序内容的表述中不符合规定的是()。
某企业目前的信用政策为20天,估计下年度全年销售量为20万件,单价5元,变动成本率为80%,全年固定成本为6万元,可能发生的收账费用为6000元,可能发生的坏账损失为5000元。若企业将信用政策调整为45天,则销售收入增加30%,坏账费用增加2000
【《卢布林合并条约》】2014年历史学统考真题
最新回复
(
0
)