首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设二维随机变量(X,Y)在矩形G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记 (Ⅰ)求U和V的联合分布; (Ⅱ)求U和V的相关系数ρ.
假设二维随机变量(X,Y)在矩形G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记 (Ⅰ)求U和V的联合分布; (Ⅱ)求U和V的相关系数ρ.
admin
2017-10-25
85
问题
假设二维随机变量(X,Y)在矩形G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记
(Ⅰ)求U和V的联合分布;
(Ⅱ)求U和V的相关系数ρ.
选项
答案
(Ⅰ)由概率分布的性质知a+0.2+0.1+6+0.2+0.1+c=1,即 a+b+c=0.4. (*) 由(X,Y)的概率分布可写出X的边缘概率分布为 [*] 故E(X)=-(a+0.2)+(c+0.1)=-0.2,即a-c=0.1. (**) 又因0.5=P{Y≤0|X≤0}=[*],即a+b=0.3. (***) 将(*)、(**)、(***)联立,解方程组得 a=0.2,b=0.1,c=0.1. (Ⅱ)Z的可能取值为-2,-1,0,1,2,则 P{Z=-2}=P{X=-1,Y=-1}=0.2, P{Z=-1}=P{X=-1,Y=0}+P{X=0,Y=-1}=0.1, P{Z=0}=P{X=-1,Y=1}+P{X=0,Y=0}+P{X=1,Y=-1}=0.3, P{Z=1}=P{X=1,Y=0}+P{X=0,Y=1}=0.3, P(Z=2}=P{X=1,Y=1}=0.1. 故Z的概率分布为 [*] (Ⅲ)P{X=Z}=P{X=X+Y}=P{Y=0}=0+0.1+0.1=0.2.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Str4777K
0
考研数学一
相关试题推荐
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设总体X的分布律为P(X=k)=(1-p)k-1p(k=1,2,…),其中p是未知参数,X1,X2,…,Xn为来自总体的简单随机样本,求参数p的矩估计量和极大似然估计量.
设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().
(1)【证明】由|λE-A|=(λ-1)2(λ+2)=0得λ1=λ2=1,λ3=一2.[*]
把写成极坐标的累次积分,其中D={(x,y)|0≤x≤1,0≤y≤x}.
用变量代换x=Int将方程化为y关于t的方程,并求原方程的通解.
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由
设100件产品中有10件不合格,现从中任取5件进行检验,如果其中没有不合格产品,则这批产品被接受,否则被拒绝.求:(1)在任取5件产品中不合格产品件数X的数学期望和方差;(2)这批产品被拒绝的概率.
设则其以2π为周期的傅里叶级数在点x=π处收敛于_______.
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
随机试题
发热机制的基本环节有
复苏过程中,成人尿量应每小时不少于
水闸的主要组成部分是()。
背景某施工单位承接一项200MW火力发电厂全部机电安装工程,工程内容包括:锅炉机组、汽轮发电机组、厂变配电站、化学水车间、制氢车间、空气压缩车间等。其中锅炉汽包重102t,安装位置中心标高为52.7m;发电机定子158t(不包括两端罩),安装在标高+10
计算机病毒可能破坏硬件。()
某百货商场(增值税一般纳税人)5月份购销业务如下:(1)代销服装一批,从零售总额中按10%提取的代销手续费为3.6万元;(2)购入副食品一批,货款已付,但尚未验收入库,取得的非仿伪专用发票上注明价、税款分别为64万元、10.88万元;
审计项目组成员与公众利益实体的审计客户董事之间是主要近亲属关系,以下防范措施中,最恰当的是()。
国家级文化生态保护区总体规划实施3年后,由省级人民政府文化主管部门向文化和旅游部提出验收请求。()
短路电流的计算按系统内()。
秦国能消灭六国,统一天下的根本原因是()。
最新回复
(
0
)