首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是实数集上连续的偶函数,在(-∞,0)上有唯一的零点x0=-1,且fˊ(x0)=1,则函数的严格单调增区间是( ).
设f(x)是实数集上连续的偶函数,在(-∞,0)上有唯一的零点x0=-1,且fˊ(x0)=1,则函数的严格单调增区间是( ).
admin
2019-08-21
72
问题
设f(x)是实数集上连续的偶函数,在(-∞,0)上有唯一的零点x
0
=-1,且fˊ(x
0
)=1,则函数
的严格单调增区间是( ).
选项
A、(-∞,-1)
B、(-1,0)
C、(-1,1)
D、(1,+∞)
答案
C
解析
由题设条件,根据导数定义、极限的保号性、变限函数求导数以及偶函数的性质进行讨论便可得结论.
解:在(-∞,0)上考虑,由x
0
为f(x)的零点可得
由极限的保号性质可知,存在δ>0,在[x
0
-δ,x
0
+δ] ?(-∞,0)内有f(x)/(x-x
0
)>0.因此,当x∈[x
0
-δ,x
0
]时,f(x)<0;当x∈(x
0
,x
0
+δ]时,f(x)>0.由f(x)在(-∞,0)上有唯一零点x
0
=-1,可得当x∈(-∞,x
0
-δ)时,f(x)<0;x∈(x
0
+δ,0)时,f(x)>0(理由见方法点击).
由题设f(x)是实数集上连续的偶函数,可得x∈(0,1)时,f(x)>0;x∈(1,+∞)时,f(x)<0.综合上述,x∈(-1,1)时,f(x)>0;x∈(-∞,-1)及x∈(1,+∞)时,f(x)<0.因为Fˊ(x)=f(x),因此F(x)在(-1,1)内严格单调增加.
故应选(C).
转载请注明原文地址:https://www.kaotiyun.com/show/SKN4777K
0
考研数学二
相关试题推荐
设讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③函数的可微性.
设函数f(u)具有二阶连续导数,函数z=f(exsiny)满足方程,若f(0)=0,f’(0)=0,求函数f(u)的表达式.
假设λ为n阶可逆矩阵A的一个特征值,证明:为A-1的特征值;
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x←0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
D是顶点分别为(0,0),(1,0),(1,2)和(0,1)的梯形闭区域,则(1+x)sinydσ=______。
设函数F(x)在所讨论的区间上可导.下述命题正确的是()
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立.①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关.②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
随机试题
Mostyoungpeopleenjoysomeformofphysicalactivity.Itmaybewalking,bicycling,orswimming,orinwinter,skatingorskii
A、稼穑B、曲直C、润下D、炎上E、从革火的特性是
(2005年)原子序数为24的元素,其原子外层电子排布式应是()。
唐晓林退休时预计可积累资金50万元,若退休后投资报酬率为6%,预估退休至终老还有20年时间,则他退休后每个月的生活费应低于( )元。
日出日落,花开花谢,同样,人生中的生老病死、失败挫折也是再平常不过的了。与其暗自垂泪、一蹶不振,不如顺应自然规律,以“_____________,_____________”的积极进取的态度来生活才是明智之举。(刘禹锡《酬乐天扬州初逢席上见赠》)
下列对聘用制度的定位不准确的是()。
你是铁路公安处的工作人员,有人在铁路两旁摆放烟花爆竹,故单位要你组织一次有关安全教育知识的宣传活动,你怎么组织?
某市碳排放交易试点全面启动,企业如不能完成减排目标,可通过在市场上购买不足部分的配额来履行减排责任。同样,企业如果通过努力超额完成减排目标,也可以在市场上出售其剩余配额,从而获得一定收益。碳排放交易试点全面启动()。
在区间[一1,1]上,下列函数不满足罗尔定理的是().
Baltimorewasfoundedin1729.Foragenerationitseemednodifferentfromadozenothersmallsettlements【C1】______upattheh
最新回复
(
0
)