首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶实对称矩阵A满足A2=E,且秩r(A+E)=k<n. (I)求二次型xTAx的规范形; (Ⅱ)证明B=E+A+A2+A3+A4是正定矩阵,并求行列式|B|的值.
设n阶实对称矩阵A满足A2=E,且秩r(A+E)=k<n. (I)求二次型xTAx的规范形; (Ⅱ)证明B=E+A+A2+A3+A4是正定矩阵,并求行列式|B|的值.
admin
2015-04-30
77
问题
设n阶实对称矩阵A满足A
2
=E,且秩r(A+E)=k<n.
(I)求二次型x
T
Ax的规范形;
(Ⅱ)证明B=E+A+A
2
+A
3
+A
4
是正定矩阵,并求行列式|B|的值.
选项
答案
(Ⅰ)设λ为矩阵A的特征值,对应的特征向量为α,即Aα=λα,α≠0,则A
2
α=λ
2
α由于A
2
=E,从而(λ
2
一1)α=0.又因α≠0,故有λ
2
一1=0,解得λ=1或A=一1. 因为A是实对称矩阵,所以必可对角化,且秩r(A+E)=k,于是 [*] 那么矩阵A的特征值为:1(k个),一1(n一k个). 故二次型x
T
Ax的规范形为y
1
2
+…+y
k
2
一y
k+1
2
一…一y
n
2
. (Ⅱ)因为A
2
=E,故 B=E+A+A
2
+A
3
+A
4
=3E+2A. 所以矩阵B的特征值是:5(k个),1(n—k个).由于B的特征值全大于0且B是对称矩阵,因此B是正定矩阵,且|B|=5
k
×1
n-k
=5
k
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/RUU4777K
0
考研数学三
相关试题推荐
发展国民经济的第一个五年计划规定,集中主要力量发展
中国共产党早期组织领导的第一个工会是
材料1历史已经并将继续证明,只有社会主义才能救中国,只有坚持和发展中国特色社会主义才能实现中华民族伟大复兴。国内外形势正在发生深刻复杂变化,我国发展仍处于重要战略机遇期。我们具备过去难以想象的良好发展条件,但也面临着许多前所未有的困难和挑战。中国
设A,B是同阶正定矩阵,则下列命题错误的是().
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
判断下列级数的绝对收敛性和条件收敛性
利用极坐标将积分,化成一元函数积分式,其中f连续.
求函数f(x)=x/y、φ(x)=|x|/x当x→0时的左、右极限,并说明它们在x→0时的极限是否存在.
试用Mathematica求出下列函数的导数:(1)y=sinx3;(2)y=arctan(1nx);(3)y=(1+1/x)x;(4)y=2xf(x2).
设f(x)有连续导数,f(0)=0,f’(0)≠0,且当x→0时,F’(x)与xk是同阶无穷小,则k等于
随机试题
中国古代政治制度的鲜明特点是
简述价值观的作用。
1945年4月,出席联合国制宪会议中国代表团中的解放区代表是
Nearly54millioncarsandtrucksintheUnitedStatesareequippedwithdriversideairbagslocatedinthecenterofthesteer
Nobodywantstobe【21】.Unfortunatelyourbodiescan【22】problems.Whenwearen’t【23】,ourbodiestellus.Sometimesapartofou
公共场所的经营者未查验服务人员的健康合格证明或者允许未取得健康合格证明的人员从事服务工作,省、自治区、直辖市人民政府确定的公共场所的经营者未在公共场所内放置安全套或者设置安全套发售设施的,由县级以上人民政府卫生主管部门责令限期改正,给予警告,可以并处多少元
设备购置后,无论是使用还是闲置,都会发生磨损。下列不属于设备磨损分类形式的是()
以下几种因素中,对股票价格影响最大的是()。
一般来说,发生通货膨胀时,靠固定工资生活的人生活水平会()。
Thetechnologicalrevolutionsofthelasttwodecadeshaveplacedasevereburdenontheconceptoftechnologytransfer.Itisq
最新回复
(
0
)