首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
微分方程y’’一4y’+4y=x2+8e2x的一个特解应具有形式(a,b,c,d为常数) ( )
微分方程y’’一4y’+4y=x2+8e2x的一个特解应具有形式(a,b,c,d为常数) ( )
admin
2015-08-17
57
问题
微分方程y’’一4y’+4y=x
2
+8e
2x
的一个特解应具有形式(a,b,c,d为常数) ( )
选项
A、ax
2
+bx+ce
2x
B、ax
2
+bx+c+dx
2
e
2x
C、ax
2
+bx+cxe
2x
D、ax
2
+(bx
2
+cx)e
2x
答案
B
解析
对应特征方程为r
2
一4r+4=0,特征根是r
1,2
=2.而f
1
=x
2
,λ
1
=0非特征根,故y
1
*
=ax
2
+bx+c.又f
2
=8e
2x
,λ
2
=2是二重特征根,所以y
2
*
=dx
2
e
2x
,y
1
*
与y
2
*
合起来就是特解,选B.
转载请注明原文地址:https://www.kaotiyun.com/show/RQw4777K
0
考研数学一
相关试题推荐
设f(χ)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf′(ξ)-f(ξ)=f(2)-2f(1).
若四次方程a。x4+a1x3+a2x+a3x+a4=0有四个不同的实根,试证明4a。x3+3a1x2+2a2x+a3=0的所有根皆为实根.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)=f(ξ)=f(2)-2f(1).
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在.(1)写出f(x)的带拉格朗日余项的麦克劳林公式;(2)证明:存在ξ1,ξ2∈[-a,a],使得
设向量组α1=(1,3,2,0)T,α2=(7,0,14,3)T,α3=(2,一1,0,1)T,α4=(5,1,6,2)T,α5=(2,一1,4,1)T,求该向量组的秩和一个极大线性无关组,并把不是极大线性无关组的向量用此极大线性无关组线性表示.
Y服从参数X的指数分布,而X是服从[1,2]上的均匀分布的随机变量.求Y的边缘密度函数;
设A为n阶方阵(n≥2),A*为A的伴随矩阵,证明:
求微分方程y’’(x+y’2)=y’满足初始条件y(1)=y’(1)=l的特解。
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
随机试题
建设工程竣工验收应当具备下列条件:()
资本公积经批准后可用于派发现金股利。()
金华市境内分为哪几大水系?()
下列表述不正确的一项是()。
犯罪主体只能是自然人。()
不随便承诺,不做违反政策的事,是接待来访的()的基本要求。
有一块直角梯形形状的草地,上底与下底的长度之比为3:4。现在要扩充其面积,将上底增加了15米,下底变成以前的2倍,正好变成一个正方形。问:原来草地的面积是多少平方米?
Everyhumanbeingisfallible;wemakemistakes.InAmericawhenamistakehasbeenmade,itisconsideredfittingfortheperso
TheapartmentisfurnishedwithallthefollowingEXCEPT
KeepOurSeasCleanA)Bytheyear2050itisestimatedthattheworld’spopulationcouldhaveincreasedtoaround12billio
最新回复
(
0
)