首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
f(x)在闭区间[0,c]上连续,其导函数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0. 运用拉格朗日中值定理证明不等式f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c。
f(x)在闭区间[0,c]上连续,其导函数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0. 运用拉格朗日中值定理证明不等式f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c。
admin
2022-08-12
76
问题
f(x)在闭区间[0,c]上连续,其导函数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0.
运用拉格朗日中值定理证明不等式f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c。
选项
答案
当a=0时,f(0)=0有f(a+b)=f(b)=f(a)+f(b)。 当a>0时,在[0,a]和[b,a+b]上分别运用拉格朗日中值定理,有 f’(ξ
1
)=[f(a)-f(0)]/(a-0)=f(a)/a,ξ
1
∈(0,a), f’(ξ
2
)=[f(a+b)-f(b)]/(a+b-b)=[f(a+b)-f(b)]/a,ξ
2
∈(b,a+b), 显然,0<ξ
1
<a≤b<ξ
2
<a+b≤c,因为f’(x)在(0,c)内单调递减,所以f’(ξ
2
)≤f’(ξ
1
),从而有[f(a+b)-f(b)]/a≤f(a)/a,又a>0,所以有f(a+b)≤f(a)+f(b)。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/RKtv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
下面是四幅需求曲线变动图。在市场经济条件下,假定甲、乙两商品互为替代品,当甲商品价格上升时,反映乙商品需求曲线变动趋势的是()。
民营经济在促进经济发展中发挥了极其重要的作用。但是,众多民营企业缺乏自主品牌,产品同构同质、附加值低,产业转型升级已成为民营经济的当务之急。为此,政府应该()。
“教学做合一”的教学模式是()提出来的。
随着互联网的发展,大数据时代的到来,人们获取知识的方式发生了深刻的变化。越来越多的学生习惯利用电脑、智能手机等终端设备从互联网上下载和搜索自己喜欢的文章、视频来阅读和学习。这说明()。①大众传媒具有传递、共享的强大功能②大众传媒始终
某市的读书月活动提出,文化强市从阅读开始。建设文化强市过程中,读书的意义不可替代。强调读书的文化意义,是因为()。①文化在人民大众的生活中占据主导地位②先进文化是文化和社会发展的根本动力③文化为社会发展提供精神动力和智力支持④文
在思想政治课堂中,教师采用的是通过对一个具体教学情境的捕述,引导学生对这种典型的情境进行讨论的教学方法。这种教学方法有利于()。①规范课堂教学组织活动②促进学生问的相互合作③维护课堂教学秩序④增强教学情境的凝聚力
漫画《每个人心日中的上帝》体现的哲理是()。
函数列{fn(x)}与函数f(x)都在闭区间[a,b]有定义,则在[a,b]上{fn(x)}一致收敛于f(x)的充要条件是()。
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥>0,g’(x)≥0。证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)≥f(a)g(1)请说明初中函数内容教学的要求,并结合
随机试题
骨性关节炎的诊断最有价值
Thedestructionofhabitats(栖息地)allovertheworldistheprimaryreasonspeciesarebecomingextinct(灭绝)orendangered.Hous
眼震颤
白细胞数小于2×109/L,采用下列方法中哪项是错误的
在劳动卫生标准应用过程中,下列哪项是错误的
长期采用全胃肠外营养,理想静脉为
竣工验收前,()应组织进行工程竣工验收的初步验收。
根据《重大建设项目档案验收办法》的规定,项目档案验收组采用多种方法对某项目档案进行了检查,其中方法不正确的是( )。
应当认定期货经纪合同无效的情形有()。
甲乙涉嫌共同盗窃。经审理,一审法院判处甲有期徒刑3年,乙有期徒刑1年。甲以对乙量刑过轻,对自己量刑过重为由提起上诉;乙未提起上诉。对此,二审法院()。
最新回复
(
0
)