首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0。若极限f(2x-a)/(x-a)存在,证明: (Ⅰ)在(a,b)内f(x)>0; (Ⅱ)在(a,b)内存在点ξ,使(b2-a2)/∫abf(x)dx=2ξ/f(ξ); (Ⅲ
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0。若极限f(2x-a)/(x-a)存在,证明: (Ⅰ)在(a,b)内f(x)>0; (Ⅱ)在(a,b)内存在点ξ,使(b2-a2)/∫abf(x)dx=2ξ/f(ξ); (Ⅲ
admin
2018-04-14
81
问题
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0。若极限
f(2x-a)/(x-a)存在,证明:
(Ⅰ)在(a,b)内f(x)>0;
(Ⅱ)在(a,b)内存在点ξ,使(b
2
-a
2
)/∫
a
b
f(x)dx=2ξ/f(ξ);
(Ⅲ)在(a,b)内存在与(Ⅱ)中ξ相异的点η,使f’(η)(b
2
-a
2
)=2ξ/(ξ-a)∫
a
b
f(x)dx。
选项
答案
(Ⅰ)由题设[*]存在,故 [*]f(2x-a)=f(a)=0。 又f’(x)>0,所以f(x)在(a,b)内单调增加,故 f(x)>f(a)=0,x∈(a,b)。 (Ⅱ)设F(x)=x
2
,g(x)=∫
a
x
f(t)dt(a≤x≤b),则g’(x)=f(x)>0(由(Ⅰ)已证得),故F(x),g(x)满足柯西中值定理的条件,因此在(a,b)内存在点ξ,使 [*] 即(b
2
-a
2
)/∫
a
b
f(x)dx=2ξ/f(ξ)。 (Ⅲ)由题设可知f(a)=0,所以f(ξ)=f(ξ)-f(a),在[a,ξ]上应用拉格朗日中值定理,知在(a,ξ)内存在一点η,使f(ξ)=f’(η)(ξ-a),从而由(Ⅱ)的结论得 [*] 即f’(η)(b
2
-a
2
)=2ξ/(ξ-a)∫
a
b
f(x)dx。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/QRk4777K
0
考研数学二
相关试题推荐
证明:
设函数f(x)满足关系式f"(x)+[f’(x)]2=x,且f’(0)=0,则
[*][*]
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0).试求曲线L的方程;
化二重积分为二次积分(写出两种积分次序).(1)D={(x,y)||x|≤1,|y|≤1}.(2)D是由y轴,y=1及y=x围成的区域.(3)D是由x轴,y=lnx及x=e围成的区域.(4)D是由x轴,圆x2+y2-2x=0在第一象限的部分及直线x
已知质点在时刻t的速度为v=3t-2,且t=0时距离s=5,求此质点的运动方程.
设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且,(φ)≠0,f(x)有间断点,则
设,求f(x)的间断点并指出其类型.
求函数的间断点,并指出其类型.
随机试题
Thekeytoanysuccessfulgaragesale(家庭旧物出售)istogetthewordout.Thebestmeansofadvertisingyoursaleistoplaceanad
Thecommittee______aconclusiononlyafterdaysofdiscussion.
A.成型或分装前使用同一台混合设备一次混合量所生产的均质产品B.同一批原料药在同一连续生产周期内生产的均质产品C.同一配液罐一次所配制的药液所生产的均质产品D.灌装前经最后混合的药液所生产的均质产品E.由一定数量的产品内经最后混合所得的在规
下列行为中不属于不正当竞争的行为是()。
张某通过房产经纪公司购买王某一套住房并办理了转让登记手续,后王某以房屋买卖合同无效为由,向法院起诉要求撤销登记行为。行政诉讼过程中,王某又以张某为被告就房屋买卖合同的效力提起民事诉讼。下列选项中正确的是()。
下列表示方法中,属于压型钢板型号表示方法中组成部分的有()。
人们认为月光下的粉笔仍然是白的,这是由于()
Heinsistedongoingtherealone.Icouldn’tkeephim______doingthat.
Choosethecorrectletter,A,BorC.【L38】
EachdayofEarthWeek,forexample,hasbeengivenovertoaseparateenvironmentalissue.Theyare,【C1】______,energyefficien
最新回复
(
0
)