首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),其中α1,α2,α3,α4均为4维列向量,且α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知4阶方阵A=(α1,α2,α3,α4),其中α1,α2,α3,α4均为4维列向量,且α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
admin
2019-03-21
72
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),其中α
1
,α
2
,α
3
,α
4
均为4维列向量,且α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
.如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解.
选项
答案
由α
2
,α
3
,α
4
线性无关和α
1
=2α
2
一α
3
知矩阵A的秩为3,因此Ax=0的基础解系中只有一个解向量. 由α
1
一2α
2
+α
3
+0α
4
=0得 [*] 即齐次线性方程组Ax=0的基础解系为[*] 再由[*] 知[*] 为非齐次线性方程组Ax=β的一个特解,于是Ax=β的通解为 [*]
解析
本题考查抽象非齐次线性方程组的求解问题.所涉及的知识点是
(1)向量组线性相关性的判定.
向量组α
1
,α
2
……α
m
线性相关
向量组中至少有一个向量能用其余的m—1个向量线性表示;若α
1
,α
2
……α
r
线性相关,则α
1
,…,α
r
,α
r+1
…,α
m
仍线性相关.
(2)向量组极大无关组和秩概念.
r(A)=A的列秩=A的行秩.
(3)未知数的个数(n)一系数矩阵的秩r(A)=基础解系解向量的个数.
(4)非齐次线性方程组通解的结构.
若Ax=0的系数矩阵A的秩r(A)=r,则Ax=b通解x=k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
…+η
*
.
转载请注明原文地址:https://www.kaotiyun.com/show/QLV4777K
0
考研数学二
相关试题推荐
设0<x1<x2,f(x)在[x1,x2]可导,证明:在(x1,x2)内至少一个c,使得
设f(x)=,(Ⅰ)若f(x)处处连续,求a,b的值;(Ⅱ)若a,b不是(Ⅰ)中求出的值时f(x)有何间断点,并指出它的类型.
设物体A从点(0,1)出发,以速度大小为常数v沿y轴正方向运动,物体B从点(-1,0)与A同时出发,其速度大小为2v,方向始终指向A,任意时刻日点的坐标(x,y),试建立物体B的运动轨迹(y作为x的函数)所满足的微分方程,并写出初始条件.
在[0,+∞)上给定曲线y=y(x)>0,y(0)=2,y(x)有连续导数.已知x>0,[0,x]上一段绕x轴旋转所得侧面积等于该段旋转体的体积.求曲线y=y(x)的方程.
设函数f(x)与g(x)在区间[a,b]上连续,证明:[∫abf(x)g(x)dx]2≤∫abf2(x)dx∫abg2(x)dx.(*)
n维向量组(Ⅰ)α1,α2,…,αr可以用n维向量组(Ⅱ)β1,β2,…,βs线性表示.
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性.①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示.②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也
证明n阶行列式
求函数f(x)=,所有的间断点及其类型。
设对一切的χ,有f(χ+1)=2f(χ),且当χ∈[0,1]时f(χ)=χ(χ2-1),讨论函数f(χ)在χ=0处的可导性.
随机试题
用除气、除泡的方法可以降低钻井液的密度。()
对家庭权利结构的理解,正确的是
A.柯萨奇病毒B.带状疱疹病毒C.腺病毒D.人类疱疹病毒6型E.呼吸道合胞病毒幼儿急疹的病原是()
背景资料某空调工程,该工程采用集中式空调系统,风管系统设计工作压力为1600Pa。某工程公司承担了此空调工程的施工任务,在风管的制作与安装施工过程中,其部分具体的施工方法和过程如下:(1)风管穿过需要封闭的防火防爆楼板时,设置了1.2mm厚
下列属于北传佛教传播国家或地区的是()。
【2014年山东潍坊.判断】学生在看书时,用红色划出重点,以便重新阅读,这是利用知觉的整体性。()
A、 B、 C、 D、 C直线线条数为8、7、6、5、(4),故选择C。
设计制作一个多媒体地图导航系统,使其能根据用户需求缩放地图并自动搜索路径,最适合的地图数据应该是(14)。
在资源子网中,______是用户访问网络的界面。
AControlofRespirationBBeautyofFreshCutFlowersCRoleofRespirationDMostImportantAspectofFlowerCareENeed
最新回复
(
0
)