首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs均为n维列向量,A是m × n矩阵,下列选项正确的是
设α1,α2,…,αs均为n维列向量,A是m × n矩阵,下列选项正确的是
admin
2019-07-12
92
问题
设α
1
,α
2
,…,α
s
均为n维列向量,A是m × n矩阵,下列选项正确的是
选项
A、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
。线性相关.
B、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
C、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
D、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
答案
A
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Q3J4777K
0
考研数学三
相关试题推荐
判断级数的敛散性.
判断级数的敛散性.
(2000年)假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是P1=18—2Q1,P2=12一Q2,其中P1和P2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求量,单位
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…n),二次型f(x1,x2,…,xn)=xixj。(Ⅰ)记xT=(x1,x2,…,xn),把f(x1,x2,…,xn)=xixj。写成矩阵
(2007年)设二维随机变量(X,Y)的概率密度为(Ⅰ)求P{X>2Y};(Ⅱ)求Z=X+Y的概率密度fZ(z)。
一学徒工用同一台机床连续独立生产3个同种机器零件,且第i个零件是不合格品的概率pi=(i=1,2,3).则三个零件中合格品零件的期望值为_______.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设f(x)二阶连续可导且f(0)=f’(0)=0,f’’(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f∫abxφ(x)dx].
设有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
随机试题
“十二五”以来,浙江省花卉产业持续快速发展,到2015年年底,全省花卉生产面积233.93万亩,与上年基本持平,比2011年增长21.5%,占全国总面积的11.5%,位居全国首位。花卉产业总产值达522.54亿元,同比增长2.3%,是2011年的1.84倍
在相对湿度为56%.时,水不溶性药物A与B的吸湿量分别为3g和2g,A与B混合后,若不发生反应,则混合物的吸湿量为
为了解路面基层含水率情况,可以选用配有淋水冷却装置和150mm钻头的钻机取芯检测。()
《测绘法》对未经批准,擅自建立相对独立的平面坐标系统的,可以处()的罚款。
消防控制室需要配置哪些监控设备?这些设备配置能够实现哪些监控功能?
下列属于双重性账户的有()。
在分销渠道管理中,面临的重要决策是选择()。
根据公司法律制度的规定,下列选项中,属于上市公司监事会职权的有()。
下列情形构成表见代理的有()。
对长度为n的线性表排序,在最坏情况下,比较次数不是n(n-1)/2的排序方法是()。
最新回复
(
0
)