首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(X,Y)是二三维连续型随机变量,下列各式都有意义,若X与Y独立,则下列式中必成立的个数为 ( ) ①E(XY)=EX.EY; ②FX|Y(x|y)=fX(x); ③P{X>x,Y>y}=1一FX(x)FY(y); ④令Z=X
设(X,Y)是二三维连续型随机变量,下列各式都有意义,若X与Y独立,则下列式中必成立的个数为 ( ) ①E(XY)=EX.EY; ②FX|Y(x|y)=fX(x); ③P{X>x,Y>y}=1一FX(x)FY(y); ④令Z=X
admin
2018-03-30
50
问题
设(X,Y)是二三维连续型随机变量,下列各式都有意义,若X与Y独立,则下列式中必成立的个数为 ( )
①E(XY)=EX.EY;
②F
X|Y
(x|y)=f
X
(x);
③P{X>x,Y>y}=1一F
X
(x)F
Y
(y);
④令Z=X+Y,则F
Z
(z)=∫
-∞
+∞
F
X
(z—y)
Y
(y)dy.
选项
A、1.
B、2.
C、3.
D、4.
答案
C
解析
①显然成立;
②成立,事实上
f
X|Y
(x|y)=
=f
X
(x);
③不成立,事实上
P{X>x,Y>y}=1一
=1一P{{X≤x}∪{Y≤y}}
≠1一F
X
(z)F
Y
(y);
④成立,事实上
F
Z
(z)=P{X+Y≤z}=
f
X
(x)f
Y
(y)dxdy
=∫
-∞
+∞
[∫
-∞
z—y
f
X
(x)dx]f
Y
(y)dy=∫
-∞
+∞
F
X
(z—y)f
Y
(y)dy.
转载请注明原文地址:https://www.kaotiyun.com/show/PwX4777K
0
考研数学三
相关试题推荐
已知级数条件收敛,则
设向量组(Ⅰ):α1,α2,…,αr线性无关,且(Ⅰ)可由(Ⅱ):β1,β2,…,βs线性表示.证明:在(Ⅱ)中至少存在一个向量βj,使得向量组βj,α2,…,αr线性无关.
已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex.(I)求f(x)的表达式;(II)求曲线的拐点.
设f(x)在x=a的某邻域内有定义,则f(x)在x=a处可导的一个充要条件是:
设函数f(x),g(x)在[a,b]上连续,且g(x)>0.利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使
设(X,Y)的联合密度函数为f(x,y)=(Ⅰ)求常数k;(Ⅱ)求X的边缘密度;(Ⅲ)求当X=x(0≤x≤)下Y的条件密度函数(y|x).
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)f’(0)≠0,当h→0时,若af(h)+bf(2h)一f(0)=o(h),试求a,b的值.
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列陈述中正确的个数是()①φ[f(x))]必有间断点.②[φ(x)]2必有间断点.③f[φ(x)]没有间断点.
设(1)用变限积分表示满足上述初值条件的解y(x);(2)讨论是否存在,若存在,给出条件;若不存在,说明理由.
当掷一枚均匀硬币时,问至少应掷多少次才能保证正面出现的频率在0.4至0.6之间的概率不小于0.97试用切比雪夫不等式和中心极限定理来分别求解.(Ф(1.645)=0.95)
随机试题
低出生体重儿
我国高血压病最常见的死亡原因是()
按照医院药品管理规定,要求“处方单独存放,每日清点”的药品是
A公司为上市公司,所得税税率为25%。2×13年,A公司由于为与其有业务往来的B公司的银行贷款提供担保而确认了相应的预计负债,计入当年度的营业外支出。该担保与A公司取得应纳税收入相关。2×15年该担保责任履行完毕,A公司在2×14年企业所得税汇算清缴期间向
最早从理论上阐述了班级授课制,为班级授课制奠定了理论基础的著作足()。
人民法院审理行政案件,可以依据的规范性文件是()。
以下选项中,属于精神文明建设的内容的是()
计算,L:由圆周x2+y2=a2,直线y=x及x轴在第一象限中所围图形的边界.
Readthearticlebelow.Foreachquestion(23-28)ontheoppositepage,choosethecorrectanswer.Markoneletter(A,BorC)onyo
AdelegationofAmericanofficialsappearedbeforeaninternationallegalpanelon(36)toarguethatinitsfight(37),theUn
最新回复
(
0
)