首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵. 证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵. 证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
admin
2018-06-15
66
问题
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=
其中A
*
是A的伴随矩阵,E为n阶单位矩阵.
证明矩阵Q可逆的充分必要条件是α
T
A
-1
α≠b.
选项
答案
用拉普拉斯展开式及行列式乘法公式,有 [*] =|A|
2
(b-α
T
A
-1
α). 因为矩阵A可逆,行列式|A|≠0,故|Q|=|A|(b-α
T
A
-1
α). 由此可知,Q可逆的充分必要条件是b-α
T
A
-1
α≠0,即α
T
A
-1
α≠b.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/PXg4777K
0
考研数学一
相关试题推荐
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
已知线性方程组(Ⅰ)及线性方程组(Ⅱ)的基础解系ξ1=[-3,7,2,0]T,ξ2=[-1,-2,0,1]T.求方程组(I)和(Ⅱ)的公共解.
设α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=0,A=E+αβT,试计算:|A|;
设函数f(x)在[a,b]上连续,在(a,b)上可导且f(a)≠f(b).证明:存在η,ξ∈(a,b),使得
求不定积分
设函数f(x)在0<x≤1时f(x)=xsinx,其他的x满足关系式f(x)+k=2f(x+1),试求常数k使极限存在.
设半径为R的球面∑的球心在定球面x2+y2+z2=a2(a>0)上,问当R取何值时,球面∑在定球面内部的哪部分面积最大?
设有曲面S:=1,平面∏:2x+2y+z+5=0.(Ⅰ)在曲面S上求平行于平面∏的切平面方程;(Ⅱ)求曲面S与平面∏之间的最短距离.
设z=z(x,y)满足≠0,由z=z(x,y)可解出y=y(z,x).求:(Ⅰ);(Ⅱ)y=y(z,x).
计算下列各题:设y=求dy/dx;
随机试题
意象凝定为艺术品必须要经历物态化与()
下列选项中,不属于局部麻醉的是
A.抑制肠内细菌生长,促进乳酸杆菌繁殖B.与游离氨结合,从而降低血氨C.与氨合成尿素和鸟氨酸,从而降低血氨D.被细菌分解成乳酸和醋酸,使肠内呈酸性E.纠正氨基酸代谢不平衡,抑制假神经递质形成乳果糖在治疗肝性脑病中的机制是
不宜与氨基苷类抗生素合用的利尿药是()
运用掌握的“货币资金”的有关知识,选择正确答案。下列各项经济业务中,可以用现金进行结算的有()。
下列存款种类中,规定1000元才可起存的是()。
2015年3月甲企业将持有乙企业5%的股权以1000万元的价格转让,转让价格中包含乙企业未分配利润中归属于该股权的20万元,股权的购置成本为800万元。甲企业应确认的股权转让所得为()万元。
经董事会批准,甲公司于2×17年6月30日至年底期间关闭了部分业务,发生相关费用如下:(1)将关闭部分业务的设备转移至继续使用地点支付费用1500万元;(2)遣散部分职工支付补偿款600万元;(3)对剩余职工进行再培训发生费用250万元;(4)为提升公司形
有如下程序:#includeusingnamespacestd;classBase{public:Base(intx=0){cout<<X;}};classDerived:pu
Agoodmodernnewspaperisanextraordinarypieceofreading.Itisremarkablefirstforwhatitcontains:therangeofnewsfro
最新回复
(
0
)