首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2—α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2—α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
admin
2019-03-23
66
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
—α
3
,若β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解。
选项
答案
由α
2
,α
3
,α
4
线性无关,且α
1
=2α
2
—α
3
,知R(A)=3,从而Ax=0的基础解系只含有一个解向量。由α
1
—2α
2
+α
3
+0α
4
=0,知(1,—2,1,0)
T
为Ax=0的一个基础解系。 又β=α
1
+α
2
+α
3
+α
4
,即 (α
1
,α
2
,α
3
,α
4
)[*]=β, 知(1,1,1,1)
T
为Ax=β的一个特解。因此,Ax=β的通解为(1,1,1,1)
T
+k(1,—2,1,0)
T
,其中k为任意常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/PXV4777K
0
考研数学二
相关试题推荐
设n阶矩阵A满足A4+2A3-5A2+2A+5E=0.证明A-2E可逆.
设A是3阶不可逆矩阵,α1,α2是AX=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
已知a,b,c不全为零,证明方程组只有零解.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
设A是正定矩阵,B是实对称矩阵,证明AB相似于对角矩阵.
判断下列函数的单调性:
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)内恒为零。
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且.证明:f’(x0)=M.
随机试题
Whatdoesthespeakerimplywhenshesays,"ButthisisSantiagoDiazwe’retalkingabout"?
下列有关别(变)构酶的叙述,错误的是
急性化脓性骨髓炎最常见的致病菌是
( )的另一方面是编制施工成本控制工作计划,确定合理详细的工作流程。
监督检查不正当竞争行为的国家机关工作人员滥用职权、玩忽职守,构成犯罪的,依法追究刑事责任;不构成犯罪的,给予( )。
创办了世界上第一所幼儿园,被誉为“幼儿园之父"的是世界著名的幼儿教育家()。
影响劳动生产率的因素主要包括()。
你单位一个同事要参加岗位选举,他私下找你为他拉票,你怎么办?
Nowomancanbetoorichortoothin.ThissayingoftenattributedtothelateDuchessofWindsorembodiesmuchoftheoddspiri
Itisatruthuniversallyacknowledged,thatasinglemaninpossessionofagoodfortune,mustbeinwantofawife.However
最新回复
(
0
)