首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(94年)设4元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). (1)求线性方程组(I)的基础解系; (2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说
(94年)设4元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). (1)求线性方程组(I)的基础解系; (2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说
admin
2017-04-20
79
问题
(94年)设4元齐次线性方程组(I)为
又已知某齐次线性方程组(Ⅱ)的通解为k
1
(0,1,1,0)+k
2
(一1,2,2,1).
(1)求线性方程组(I)的基础解系;
(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
(1)由已知,(I)的系数矩阵为 [*] 故(I)的基础解系可取为:(0,0,1,0),(一1,1,0,1). (2)有非零公共解. 将(Ⅱ)的通解代入方程组(I),则有 [*] 解得k
1
=一k
2
,当k
1
=一k
2
≠0时,则向量 k
1
(0,1,1,0)+k
2
(一1,2,2,1)=k
2
[(0,一1,一1,0)+(一1,2,2,1)]=k
2
解析
转载请注明原文地址:https://www.kaotiyun.com/show/PMu4777K
0
考研数学一
相关试题推荐
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.若将所有产品开箱混装,任取一个其为废品的概率
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
一实习生用同一台机器接连独立地制造3个同种零件,第i个零件是不合格品的概率Pi=1/(i+1)(i=1,2,3),以X表示3个零件中合格品的个数,则P{X=2}=___________.
设n元线性方程组Ax=b,其中(I)证明行刿式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(层为n阶单位矩阵).
因为积分区域关于直线y=x对称,[*]
微分方程y〞+y=-2x的通解为_______.
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
设密度为1的立体Ω由不等式表示,试求Ω绕直线x=y=z的转动惯量.
随机试题
以下各药中,既可活血,又能补血,且可以舒筋活络的药是
下列选项中,不属于Wilms瘤特点的是
男,38岁,猛抬重物后感腰部剧痛,向右下肢放射,咳嗽加重,腰4~5间隙有压痛,诊断最可能是
李先生,24岁,3h前活动时突然剧烈头痛和喷射呕吐,查体:神清,四肢肌力正常,膜刺激征(+)。下列哪项护理措施不妥
《城市规划编制办法》规定,分区规划在考虑公共服务设施的问题时,哪个级别不在其中?
现实型文学的特征是()。
使文学与音乐融汇在一起的标题音乐是由()首创。
某家媒体公布了某市二十所高中的高考升学率,并按升学率的高低进行排序。专家指出,升学率并不能作为评价这些高中的教学水平的标准。以下哪项不能作为支持专家论断的论据?
根据以下资料,回答下列问题。截至2018年底,全国60周岁及以上老年人口24949万人,占总人口的17.9%,其中65周岁及以上老年人口16658万人,占总人口的11.9%。全国共有老龄事业单位1600个,老年法律援助中心2.0万个,老年维权协调组织6.
Iboughtalargeboxoffastnoodlesthinking______(它能够我一个星期吃的).
最新回复
(
0
)