首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2015年] 设向量组α1,α2,α3是三维向量空间R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3. 当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求所有的ξ.
[2015年] 设向量组α1,α2,α3是三维向量空间R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3. 当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求所有的ξ.
admin
2019-04-08
118
问题
[2015年] 设向量组α
1
,α
2
,α
3
是三维向量空间R
3
的一个基,β
1
=2α
1
+2kα
3
,β
2
=2α
2
,β
3
=α
1
+(k+1)α
3
.
当k为何值时,存在非零向量ξ在基α
1
,α
2
,α
3
与基β
1
,β
2
,β
3
下的坐标相同,并求所有的ξ.
选项
答案
设[*],则P为从基α
1
,α
2
,α
3
到另一个基β
1
,β
2
,β
3
的过渡矩阵,即 [β
1
,β
2
,β
3
]=[α
1
,α
2
,α
3
]P. 设ξ在基α
1
,α
2
,α
3
下的坐标为(x
1
,x
2
,x
3
),在基β
1
,β
2
,β
3
下的坐标为(y
1
,y
2
,y
3
).由式得到 [y
1
,y
2
,y
3
]=[x
1
,x
2
,x
3
](P
-1
)
T
. ① 由题设[y
1
,y
2
,y
3
]=[x
1
,x
2
,x
3
],则由式①得到 [x
1
,x
2
,x
3
]=[x
1
,x
2
,x
3
](P
-1
)
T
, 两边取转量得到 [*],即[*] 令X=(x
1
,x
2
,x
3
)
T
,则PX=X,即(P—E)X=0. 下面解方程组②,为要其有非零解,必有 [*],即k=0. 这时方程组②化为[*].由基础解系的简便求法即得该方程组的一个基础解系为[一1,0,1]
T
.因而该方程组的通解为[x
1
,x
2
,x
3
]
T
=c[-1,0,1]
T
,其中c为任意常数. 即x
1
=一c,x
2
=0,x
3
=c,从而所求的所有向量为ξ=x
1
α
1
+x
2
α
2
+x
3
α
1
=一cα
1
+cα
3
,其中c为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/PJ04777K
0
考研数学一
相关试题推荐
(2013年)设数列(an}满足条件:a0=3,a1=1,an-2一n(n一1)an=0(n≥2)。S(x)是幂级数的和函数。(I)证明:S"(x)一S(x)=0;(Ⅱ)求S(x)的表达式。
(2007年)设幂级数内收敛,其和函数y(x)满足y"一2xy′一4y=0,y(0)=0,y′(0)=1。(I)证明n=1,2,…;(Ⅱ)求y(x)的表达式。
(2008年)设f(x)是连续函数。(I)利用定义证明函数可导,且F′(x)=f(x);(Ⅱ)当f(x)是以2为周期的周期函数时,证明函数也是以2为周期的周期函数。
(2005年)设函数单位向量则
设A是m×n矩阵,B是n×m矩阵,则()
已知三阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A2x=3Ax-2A2x。(Ⅰ)记P=(x,Ax,A2x),求三阶矩阵B,使A=PBP-1;(Ⅱ)计算行列式|A+E|。
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为______。
随机试题
下列不属于赋予债权文书公证书强制执行效力的条件的是
关节囊内有韧带的关节是
鑫鑫养殖基地与新兴食品加工公司签订买卖合同.并约定因合同产生的争议交由A市仲裁委员会解决。后争议发生,仲裁裁决作出后,鑫鑫养殖基地向A市中级人民法院申请执行仲裁裁决,以下说法错误的是:()
矩阵式项目组织结构可以分为()结构。
间歇式(分拌式)拌合机具有自动配料系统,可自动打印()等参数。
乙企业每年现金需要量为250000元,现金与有价证券的每次转换成本分别为500元,有价证券的报酬率为10%。则企业每年最佳持有现金总成本为()元。
史籍记载:“乃使蒙恬北筑长城而守藩篱,却匈奴七百余里,胡人不敢南下而牧马,士不敢弯弓而报怨。”这一情况的出现与()有关。
回复上级机关的询问,使用()。
总经理接受了顾问提出的企业立即发展外向型经济的建议。
TheUnitedStates【C1】______alargepartoftheNorthAmericancontinent.ItsneighborsareCanada【C2】______thenorth,andMexico
最新回复
(
0
)