首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2015年] 设向量组α1,α2,α3是三维向量空间R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3. 当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求所有的ξ.
[2015年] 设向量组α1,α2,α3是三维向量空间R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3. 当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求所有的ξ.
admin
2019-04-08
99
问题
[2015年] 设向量组α
1
,α
2
,α
3
是三维向量空间R
3
的一个基,β
1
=2α
1
+2kα
3
,β
2
=2α
2
,β
3
=α
1
+(k+1)α
3
.
当k为何值时,存在非零向量ξ在基α
1
,α
2
,α
3
与基β
1
,β
2
,β
3
下的坐标相同,并求所有的ξ.
选项
答案
设[*],则P为从基α
1
,α
2
,α
3
到另一个基β
1
,β
2
,β
3
的过渡矩阵,即 [β
1
,β
2
,β
3
]=[α
1
,α
2
,α
3
]P. 设ξ在基α
1
,α
2
,α
3
下的坐标为(x
1
,x
2
,x
3
),在基β
1
,β
2
,β
3
下的坐标为(y
1
,y
2
,y
3
).由式得到 [y
1
,y
2
,y
3
]=[x
1
,x
2
,x
3
](P
-1
)
T
. ① 由题设[y
1
,y
2
,y
3
]=[x
1
,x
2
,x
3
],则由式①得到 [x
1
,x
2
,x
3
]=[x
1
,x
2
,x
3
](P
-1
)
T
, 两边取转量得到 [*],即[*] 令X=(x
1
,x
2
,x
3
)
T
,则PX=X,即(P—E)X=0. 下面解方程组②,为要其有非零解,必有 [*],即k=0. 这时方程组②化为[*].由基础解系的简便求法即得该方程组的一个基础解系为[一1,0,1]
T
.因而该方程组的通解为[x
1
,x
2
,x
3
]
T
=c[-1,0,1]
T
,其中c为任意常数. 即x
1
=一c,x
2
=0,x
3
=c,从而所求的所有向量为ξ=x
1
α
1
+x
2
α
2
+x
3
α
1
=一cα
1
+cα
3
,其中c为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/PJ04777K
0
考研数学一
相关试题推荐
(2007年)设幂级数内收敛,其和函数y(x)满足y"一2xy′一4y=0,y(0)=0,y′(0)=1。(I)证明n=1,2,…;(Ⅱ)求y(x)的表达式。
(2004年)设有方程xn+nx一1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛。
(2015年)已知函数f(x,y)=x+y+xy,曲线C:x2+y2+xy=3,求f(x,y)在曲线C上的最大方向导数。
证明n阶矩阵相似。
设矩阵B=P-1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
设A是m×n矩阵,B是n×m矩阵,则()
设矩阵其行列式|A|=-1,又A的伴随矩阵A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1)T,求a,b,c和λ0的值。
设a,b为何值时,存在矩阵C,使得AC-CA=B,并求所有矩阵C。
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为______。
随机试题
试述帕金森病的主要临床表现。
下列关于引物酶的叙述正确的是
A.二氢黄酮B.5-羟基黄酮C.黄酮醇D.7-羟基黄酮E.异黄酮能与四氢硼钾产生特征反应的是
A.Ag的抑制性调节B.抗体的抑制性调节C.免疫细胞的抑制性调节D.MHC对免疫应答的调节E.补体反馈的调节
血管内加压素是()。
Odyssey玩具公司是一家在几座城市有经营业务的零售商。每家门店的经理每天都会将存款存入当地银行不生息的支票账户。而这些当地银行会每周两次向公司总部所在的银行签发存款转账支票。公司财务主管正在考虑是否使用电汇。每笔汇款的额外成本是$25,账款回收天数会缩
按照规定,不能用红色墨水记账的情况是()。
A、 B、 C、 D、 A4个不同元素,且与前面无重复
率先将实证方法应用于研究高级心理过程的是
网络传播给国际传播带来了什么问题?(复旦大学2005年研)
最新回复
(
0
)