首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α1+α3也是该方程组的一个基础解系.
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α1+α3也是该方程组的一个基础解系.
admin
2016-05-31
54
问题
已知α
1
,α
2
,α
3
是齐次线性方程组Ax=0的一个基础解系,证明α
1
+α
2
,α
2
+α
3
,α
1
+α
3
也是该方程组的一个基础解系.
选项
答案
由A(α
1
+α
2
)=Aα
1
+Aα
2
=0+0=0知,α
1
+α
2
是齐次方程组Ax=0的解.同理可知α
2
+α
3
,α
1
+α
3
也是Ax=0的解. 设k
1
(α
1
+α
2
)+k
2
(α
2
+α
3
)+k
3
(α
1
+α
3
)=0,即 (k
1
+k
3
)α
1
+(k
1
+k
2
)α
2
+(k
2
+k
3
)α
3
=0, 因为α
1
,α
2
,α
3
是基础解系,它们是线性无关的,故 [*] 由于此方程组系数行列式D=[*]=2≠0,故必有k
1
=k
2
=k
3
=0,所以α
1
+α
2
,α
2
+α
3
, α
1
+α
3
线性无关. 根据题设,Ax=0的基础解系含有3个线性无关的向量,所以α
1
+α
2
,α
2
+α
3
,α
1
+α
3
是方程组Ax=0的一组基础解系.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/PGT4777K
0
考研数学三
相关试题推荐
中共中央政治局常务委员会2020年4月8日召开会议。会议指出,当前我国经济发展面临的困难加大。各级党委和政府要增强紧迫感,因地制宜、因时制宜优化完善疫情防控举措,千方百计创造有利于复工复产的条件,不失时机畅通产业循环、市场循环、经济社会循环。其中产业资本保
恩格斯说:“……这个原理看起来很简单,但是仔细考察一下也会立即发现,这个原理的最初结论就给一切唯心主义,甚至给最隐藏的唯心主义当头一棒。关于一切历史的东西的全部传统的和习惯的观点都被这个原理否定了。”“这个原理”指的是()。
道德作为一种特殊的社会意识形式,归根到底是由经济基础决定的,是社会经济关系的反映。这是因为()。
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
由概率的公理化定义证明:(1)P()=1-P(A);(2)P(A-B)=P(A)-P(AB).特别地,若A⊃B,则P(A-B)=P(A)-P(B).且P(A)≥P(B);(3)0≤P(A)≤1;(4)P(A∪B)
求过点P(1,2,1)及直线和平面Ⅱ:x+2y-z+4=0的交点Q的直线方程.
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
若四阶矩阵A与B为相似矩阵,A的特征值为1/2、1/3、1/4、1/5,则行列式|B-1-E|=_______.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=记X一(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
随机试题
根据《图书质量管理规定》,图书的设计质量主要涉及()等。
我国出版物发行工作的指导思想是什么?
《苦恼》中,车夫姚纳的真正苦恼在于生活艰苦。()
空调机房宜布置在靠近所服务区域处。其目的是()。
根据企业所得税法的规定,下列说法中,不正确的有()。
甲、乙、丙、丁四个小朋友玩报数游戏,从1起按下面顺序进行:甲报1,乙报2,丙报3,丁报4,丙报5,乙报6,甲报7,乙报8,丙报9……这样,报1988这个数的是谁?()
你是区教委的工作人员,接到电话报告某学校学生午餐后出现集体腹泻的情况。领导责成你处理此事。你怎么处理?
“现在轮到你说了”是()。
在名称为Forml的窗体上添加一个名称为Shape1的形状控件,添加两个名称分别为Command1、Command2,标题分别为“圆形”、“红色边框”的命令按钮。将窗体的标题设置为“图形控件”,如图1所示。请编写适当的事件过程,使得程序在运行时,单击“圆形
FrequentbusinesstravelerJoyceGioiaforgotmorethan$20000worthofjewelryinherhotelroominItalylastyear.Luckily
最新回复
(
0
)