首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组 求:(Ⅰ)方程组(1)与(2)的基础解系; (Ⅱ)(1)与(2)的公共解。
设四元齐次线性方程组 求:(Ⅰ)方程组(1)与(2)的基础解系; (Ⅱ)(1)与(2)的公共解。
admin
2017-01-14
63
问题
设四元齐次线性方程组
求:(Ⅰ)方程组(1)与(2)的基础解系;
(Ⅱ)(1)与(2)的公共解。
选项
答案
(Ⅰ)求方程组(1)的基础解系: 对方程组(1)的系数矩阵作初等行变换 [*] 分别取[*],其基础解系可取为 [*] 求方程(2)的基础解系: 对方程组(2)的系数矩阵作初等行变换 [*] 分别取[*],其基础解系可取为 [*] (Ⅱ)设x=(x
1
,x
2
,x
3
,x
4
)
T
为(1)与(2)的公共解,用两种方法求x的一般表达式: 将(1)的通解x=(c
1
,-c
1
,c
2
,-c
1
)
T
代入(2)得c
2
=-2c
1
,这表明(1)的解中所有形如(c
1
,-c
1
,-2c
2
,-c
1
)
T
的解也是(2)的解,从而是(1)与(2)的公共解。因此(1)与(2)的公共解为 x=k(-1,1,2,1)
T
,k∈R。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/PDu4777K
0
考研数学一
相关试题推荐
求y=3-x的n阶导数.
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
用待定系数法,将下列积分中被积函数的分子设为Af(x)+Bfˊ(x),利用的求法求下列不定积分:
计算曲线积分其中L是以点(1,0)为中心,R为半径的圆周(R>1),取逆时针方向.
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
已知(1)计算行列式|A|.(2)当实数α为何值时,方程组Ax=β有无穷多解,并求其通解.
由题设,根据行列式的定义和数学期望的性质,有[*]
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是α1=(﹣1,﹣1,1)T,α2=(1,﹣2,﹣1)T.(I)求A的属于特征值3的特征向量;(Ⅱ)求矩阵A.
设二二次型f(x1,x2,x3)=XTAX=ax12+2x22+(﹣2x32)+2bx1x3(b>0),其中二次矩阵A的特征值之和为1,特征值之积为﹣(I)求a,b的值;(II)利用正交变换将二次型f化为标准形,并写出所用的正交变换对应的
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP.
随机试题
《中小学教育质量综合评价指标框架(试行)》中的“品德发展水平"的关键指标包括()。
防干扰的措施有_______、_______、_______等。
TheOrdinanceof1784ismostsignificanthistoricallybecauseitembodiedtheprinciplethatnewstatesshouldbeformedfromt
采用化学发光剂作为酶反应底物的酶标记免疫测定,经过酶和发光两级放大,具有很高的灵敏度。一般以过氧化物酶为标记酶,以鲁米诺为发光底物,并加人发光增强剂以提高敏感度和发光稳定性。此类化学发光法的类型是
5岁儿童,易烦躁、异食癖、面色苍白、血红蛋白100g/L,红细胞游离原卟啉升高,最可能的疾病是
背景:北方地区某工业厂房工程地上4层,地下1层,建筑面积23010m2。天然地基,筏板基础,框架一剪力墙结构。某施工单位中标施工总承包。施工单位成立了直营项目部,并按建设单位要求进场施工。施工过程中发生了如下事件:事件一:项目部首次全员会上,安排编制《
建筑幕墙的防雷构造要求正确的有()。
注册会计师在确定审计意见类型时,遇到以下情况,请代注册会计师作出正确的判断。以下说法中,不正确的是()。
问题行为与差生、后进生等问题学生的()。
=__________。
最新回复
(
0
)