首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Ever since Gregor Mendel’s famous experiments with hybrid sweet peas, it has been known that there must be unitary elements with
Ever since Gregor Mendel’s famous experiments with hybrid sweet peas, it has been known that there must be unitary elements with
admin
2012-01-19
38
问题
Ever since Gregor Mendel’s famous experiments with hybrid sweet peas, it has been known that there must be unitary elements within the cells which exert control over inherited characteiristics, and for a long time there was considerable speculation about what these were. These elements came to be known as genes, and although they were long treated as hypothetical constructs, a great deal of knowledge about them slowly accumulated. It came to be known, for example, that each gene had to be passed along virtually unchanged from generation to generation; that there must be many thousands of these particles in every human cell, distributed unevenly among the twenty-three pairs of chromosomes; that each gene must occupy a very definite place (locus) on its chromosome; and that each pair of homologous chromosomes had to contain homologous assortments of genes, arranged with few exceptions in precisely the same order on each member of the chromosome pairs. A wonderfully complex and fruitful system thus emerged about an aspect of the world which no one has ever directly observed. Let us now briefly turn to some of the newly acquired insights which have greatly expanded the already impressive theory of genetics.
Genes are, of course, too small to be seen even by the most powerful electron microscopes, but recent research by geneticists, microbiologists, and biochemists has rapidly advanced our information about their constitution and action. The chemical substance of which the genes and thus the chromosomes are made is now known to be deoxyribonucleic acid (DNA), a giant molecule containing a double-spiral strand of material which embodies the genetic code. The chromosomes consist of long strands of DNA, which, although it is capable of transmitting vastly complex "code messages", is comprised of combinations of only four primary chemical subunits, or "code letters". This great insight into the structure and functioning of genetic material, which was first proposed by James D. Watson and Francis H. C. Crick in 1953, involves a new description of what genes are like. A gene is simply a specific portion of the double-spiral strand of DNA which consists of a particular combination of the code letters that spell out a particular code word.
Various combinations of the four code letters, forming different code words, provide the biochemical information used in the construction of the different proteins in the cell. Many of these proteins act as enzymes. The enzymes, as has been pointed out above, are the biological catalysts which direct all the chemical or metabolic reactions that are going on continuously in all cells. These metabolic functions are, of course, the basis of all the physical growth and development of any living organism.
The code is embodied in the DNA of the chromosomes and genes, but exactly how does this code determine the production of proteins? Obviously, the code must be transmitted to the sites at which the actual work of protein synthesis is carried out. The material which accomplishes this task is ribonucleic acid (RNA), a substance very similar to DNA and complementary to it. From the code site on the linear, DNA molecule (which is the gene), RNA, the messenger, carries the code to the cellular particles out into the cytoplasm of the cell, where proteins are manufactured. This messenger RNA provides the pattern, and another type of RNA, transfer RNA, collects from within the cytoplasm the raw materials, the amino acids, from which the proteins are made. With the pattern and the materials, the poteins are formed, one step at a time. These proteins act as enzymes or biological catalysis. They exist in all living organisms and control their growth and function through the control of the chemical transformations involved in metabolism. A very large number of enzymes are present in any living creature, and the absence or malformation of any enzyme can destroy the normal sequence of metabolism of a given biochemical substance.
We can thus see that genetic activity takes the form of biochemical regulation, the genes determining the formation of enzymes. In this sense, all genetic disorders are primarily metabolic defects (Garrod, 1908). A defective or changed gene will in mm produce a change in the protein with which it is associated. The only result of such a change may be a slight alteration in the function of the protein, and there may thus be little or no observable effect. If the change or defect takes place within the code message for an essential element of the protein, however, the enzyme activity of this protein may be rendered completely inactive. If this happens, the result can be grave trouble: perhaps death, serious disease, or severe mental retardation due to poisoning of the central nervous system by a metabolite that is toxic to this system. The error in enzyme synthesis may begin to be important, so that the structure of the central nervous system is faulty almost from the beginning of embryonic life, or it may become important much later in the life cycle.
It is quite likely that, in the foreseeable future, many essential biochemical processes will be understood in terms of the precise genetic codes responsible for them. All of the amino acids have already yielded to such analysis; their codes have been identified. Understanding may come control and prevention, such as may be possible by administration of the lacking enzymes, dietary control of substances which the individual is unable to metabolize, or transplantation of normal tissue to the diseased individual to correct the metabolic error.
The genetic mateiral in the nucleus of the cell is called the ______.
选项
A、cytoplasm
B、chromosome
C、chromation
D、gene
答案
D
解析
转载请注明原文地址:https://www.kaotiyun.com/show/P8xd777K
本试题收录于:
公共英语四级笔试题库公共英语(PETS)分类
0
公共英语四级笔试
公共英语(PETS)
相关试题推荐
Itwasin1812,inavillageinFrance.Alittleboytrippedandfellwithpointedtoolsinhishand.Inthataccidenthebecame
Itwasin1812,inavillageinFrance.Alittleboytrippedandfellwithpointedtoolsinhishand.Inthataccidenthebecame
Itwasin1812,inavillageinFrance.Alittleboytrippedandfellwithpointedtoolsinhishand.Inthataccidenthebecame
Inthe1960stheWestCoastbecameanimportantcenterforrockmusic.LosAngelesandSouthernCaliforniaarefamousforsun
WhenhediesinAprilof1983,Dr.JoelHildebrandwas101yearsold,whohadbeenmarriedforseventy-fiveyears,andhadtaugh
WhenhediesinAprilof1983,Dr.JoelHildebrandwas101yearsold,whohadbeenmarriedforseventy-fiveyears,andhadtaugh
Howmanyfamousexplorersarementionedinthispassage?Whoarethey?
Conventionalwisdomaboutconflictseemsprettymuchcutanddried.Toolittleconflictbreedsapathy(冷漠)andstagnation(呆滞).
Scientistsbelievethatpeople"dressedup"longbeforetheymadeahabitofwearingclothes.Primitivemandressedhimselfinf
WhatisSaffoaccordingtohimself?
随机试题
A、InMaryland.B、InVirginia.C、InCalifornia.D、InAtlanta.A
A.肿物无回声暗区内见高回声光团回声,边缘较清晰,附着于囊肿壁一侧B.肿瘤囊壁上可见隆起的结节强回声,似乳头状,其后可伴有声影C.肿瘤内表面回声强,后方回声渐渐减弱,而且反射活跃D.肿瘤内有一强回声水平分界线,上方呈均质密集细小光点,下方为无回声暗区
伤后表现为“银叉”样畸形的是
关于地下工程防水混凝土施工缝留置说法,正确的有()。
甲公司20×8年年初存货为16000元,年末的流动比率为2,速动比率为0.8,存货周转次数为5次,流动资产合计为40000元,则甲公司20×8年的销货成本为()元。
发包人在收到承包人提交的竣工结算款支付申请后()天内不予核实,不向承包人签发竣工结算支付证书的,视为承包人的竣工结算款支付申请已被发包人认可。
根据票据法律制度的规定,下列有关票据上的签章的表述中,正确的是()。
下图为第五套人民币20元的背面图。该版面景观为桂林山水,它具有“山青、水秀、洞奇、石美”的特点,被称为“四绝”。据此完成24~25题。桂林山水的美学价值主要体现在()方面。
思想品德课教学成功的基础是什么?
某公司自去年初开始实施一项“办公用品节俭计划”,每位员工每月只能免费领用限量的纸笔等各类办公用品。年末统计时发现,公司用于各类办公用品的支出较上年度下降了30%。在未实施该计划的过去5年间,公司年均消耗办公用品10万元。公司总经理由此得出:该计划去年已经为
最新回复
(
0
)