首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,…,αt是齐次方程组Aχ=0的基础解系,试判断α1+α2,α2+α3,…,αt-1+αt,αt+α1是否为Aχ=0的基础解系,并说明理由.
已知α1,α2,…,αt是齐次方程组Aχ=0的基础解系,试判断α1+α2,α2+α3,…,αt-1+αt,αt+α1是否为Aχ=0的基础解系,并说明理由.
admin
2018-06-12
53
问题
已知α
1
,α
2
,…,α
t
是齐次方程组Aχ=0的基础解系,试判断α
1
+α
2
,α
2
+α
3
,…,α
t-1
+α
t
,α
t
+α
1
是否为Aχ=0的基础解系,并说明理由.
选项
答案
作为齐次方程组AX=0的基础解系α
1
,α
2
,…,α
t
的线性组合,α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
是AX=0的一组解,个数=t=n-r(A).α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
是不是AX=0的基础解系只要判断它们是否线性无关. 设A=(α
1
,α
2
,…,α
t
),B=(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
),则B=AC,其中 [*] 因为α
1
,α
2
,…,α
t
线性无关,所以A列满秩,r(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
)=r(B)=r(C). |C|=1+(-1)
t+1
, 当t是奇数时,|C|=2,C可逆,r(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
)=t,α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
线性无关,因此是AX=0的基础解系. 当t是偶数时,|C|=0,C不可逆,r(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
)<t,α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
线性相关,因此不是AX=0的基础解系.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/OFg4777K
0
考研数学一
相关试题推荐
若3维列向量α,β满足αTβ=2,其中αT为α的转置,则矩阵βαT的非零特征值为_______.
下列矩阵中,正定矩阵是()
设有向量组A:及向量b=,问α,β为何值时:(1)向量b能由向量组A线性表示,且表示式唯一;(2)向量b不能由向量组A线性表示;(3)向量b能由向量组A线性表示,且表示式不唯一,并求一般表达式.
非齐次方程组的通解是_______.
已知R3的两个基为求由基a1,a2,a3到基b1,b2,b3的过渡矩阵P.
设A,B均为n阶可逆矩阵,则下列运算正确的是()
设函数f(χ)连续,除个别点外二阶可导,其导函数y=f′(χ)的图像如图(1),令函数y=f(χ)的驻点的个数为P,极值点的个数为q,曲线y=f(χ)拐点的个数为r,则
设z=z(χ,y)是由9χ2-54χy+90y2-6yz-z2+18=0确定的函数,(Ⅰ)求z=z(χ,y)一阶偏导数与驻点;(Ⅱ)求z=z(χ,y)的极值点和极值.
设A=,B是3阶非零矩阵,且AB=O,则Ax=0的通解是_______
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
随机试题
关于呼吸系统结构和功能特点的描述正确的是()
下面哪项不应做会阴切开
某股份公司将其所有财产向甲保险公司投保火灾保险。甲保险公司将该项保险业务的20%,以再保险的方式转由乙保险公司承保。在保险期间内,该股份公司仓库因遭雷击而发生火灾,造成损失53万元。根据这些情况,选项所作的表述中哪些是错误的?()
有关和解协议是( )强制的效力。
上海证券交易所规定融资融券业务最长时限为()个月。
首次公开发行股票的信息披露文件主要包括()。
采用ABC法对存货进行控制时,应当重点控制的是( )。
14世纪中叶,黑死病在意大利蔓延,既给人们带来恐慌,也促使人们反省:不只瘟疫造成死亡,长久以来在宗教束缚中麻木生活,活着也形同死亡。在死神笼罩的黑暗中,薄伽丘的()为人们的心灵打开了一扇窗户。
失忆症主要分为心因性失忆症和解离性失忆症。心因性失忆症是一种选择性的反常遗忘现象,是指患者对新近重大事件(如创伤、丧亲)因震撼过大不堪回首而产生部分性、选择性遗忘,或暂时性将记忆解离,使其不出现在意识中。解离性失忆主要是意识、记忆、身份、或对环境的正常整合
Thesatisfactionofcustomers’desirefornewproductsis______.Accordingtothereporteryouwillhavehugeadvantageif_____
最新回复
(
0
)