首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e一4x+x2+3x+2,则Q(x)=________,该微分方程的通解为________.
设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e一4x+x2+3x+2,则Q(x)=________,该微分方程的通解为________.
admin
2019-05-19
89
问题
设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e
一4x
+x
2
+3x+2,则Q(x)=________,该微分方程的通解为________.
选项
答案
C
1
e
一4x
+C
2
e
3x
+x
2
+3x+2(其中C
1
,C
2
为任意常数).
解析
显然λ=一4是特征方程λ
2
+λ+q=0的解,故q=一12,
即特征方程为λ
2
+λ一12=0,特征值为λ
1
=一4,λ
2
=3.
因为x
2
+3x+2为特征方程y"+y’一12y=Q(x)的一个特解,所以Q(x)=2+2x+3一12(x
2
+3x+2)=一12x
2
—34x一19,且通解为y=C
1
e
一4x
+C
2
e
3x
+x
2
+3x+2(其中C
1
,C
2
为任意常数).
转载请注明原文地址:https://www.kaotiyun.com/show/O9J4777K
0
考研数学三
相关试题推荐
设y(x)是微分方程y’’+(x-1)y’+x2y=ex满足初始条件y(0)=0,y’(0)=1的解,则().
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=,r(B)=2.(1)求方程组(Ⅰ)的基础解系;(2)求方程组(Ⅱ)BX=0的基础解系。(3)(I)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=______.
设f(x)在[a,b]上连续,证明:∫abf(x)dx∫xbf(y)dy=[∫abf(x)dx]2.
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f’’(ξ)=.
微分方程yy’-2(y’)2=0的通解为______.
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
某厂家生产的一种产品同时在两个市场上销售,售价分别为p1,p2,销售量分别为q1,q2,需求函数分别为q1=24-0.2p1,q2=10-0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格,能使其获得总利润最大?最
设总体X~U(θ1,θ2),X1,X2,…,Xn是来自总体X的样本,求θ1,θ2的矩估计和最大似然估计.
设随机变量X,Y相互独立,它们的分布函数为FX(x),Fy(y),则Z=max{X,Y}的分布函数为().
随机试题
A0图纸的幅面尺寸大小应是
耳蜗底部受损将导致
照射75Gy不发生严重并发症的组织包括
A.化脓性心肌炎B.间质性心肌炎C.实质性心肌炎D.中毒性心肌炎E.免疫反应性心肌炎仔猪发生口蹄疫时,心脏常常呈现“虎斑心”外观,镜下见心肌细胞脂肪变性,肌纤维断裂崩解,间质中见淋巴细胞、巨噬细胞等浸润。此病变为()
危重病人,突然头额冷汗大出,四肢厥冷。属于
“十二五”时期,促使我国国内市场总体规模位居世界前列的措施包括()。
关于情绪与情感的联系,下列说法正确的有()
90%的大学毕业论文是在一个月内完成的,论文质量堪忧,有专家建议取消高校毕业论文。你怎么看?
若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(14)若r(A)=r(B),则AX=0与BX=0同解以上命题正确的是().
Intheeveningbeforethetest.youhadbettergather(集中)thethingsyouneedtohavewithyouatthetest.includingpens.pen
最新回复
(
0
)