首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是4维非零列向量组,A=(α1,α2,α3,α4),A*是A的伴随矩阵,已知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0的基础解系为( )
设α1,α2,α3,α4是4维非零列向量组,A=(α1,α2,α3,α4),A*是A的伴随矩阵,已知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0的基础解系为( )
admin
2019-03-23
72
问题
设α
1
,α
2
,α
3
,α
4
是4维非零列向量组,A=(α
1
,α
2
,α
3
,α
4
),A
*
是A的伴随矩阵,已知方程组Ax=0的基础解系为(1,0,2,0)
T
,则方程组A
*
x=0的基础解系为( )
选项
A、α
1
,α
2
,α
3
。
B、α
1
+α
2
,α
2
+α
3
,3α
3
。
C、α
2
,α
3
,α
4
。
D、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
。
答案
C
解析
由Ax=0的基础解系仅含1个解向量,知|A|=0且R(A)=4—1=3,所以R(A
*
)=1,那么A
*
x=0的基础解系应含3个解向量,故排除D。
又由题设有(α
1
,α
2
,α
3
,α
4
)(1,0,2,0)
T
=0,即α
1
+2α
3
=0,亦即α
1
,α
3
线性相关,所以排除A、B,故选C。
转载请注明原文地址:https://www.kaotiyun.com/show/NXV4777K
0
考研数学二
相关试题推荐
下列矩阵中不能相似对角化的是
当a,b取何值时,方程组有唯一解,无解,有无穷多解?当方程组有解时,求其解.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
设α是n维非零列向量,记A=E-ααT.证明αTα≠1A可逆.
证明:r(A)=r(ATA).
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且.证明:f’(x0)=M.
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在η∈(0,2),使f(n)=f(0);
随机试题
人体内的必需氨基酸为8种。()
工作场所健康教育
不属于补体系统功能的是
该患儿首先考虑的诊断是应采取的紧急措施是
患儿,2岁。排黏液脓血便反复发作2个月余,伴营养不良,贫血。疑诊慢性菌痢。
患者,女,30岁。休克,现血压80/60mmHg,皮肤多处瘀斑,考虑弥散性血管内凝血(DIC)。应首选的药物治疗是
某药材有效成分遇热不稳定,工作人员预提取该物质,可以采用的方法为()
在合同计价争议的鉴定中,鉴定项目的发包人对承包人材料采购价格高于合同约定不予认可的说法,正确的有()。
设备成新率是指()。
关于企业所得税的扣除项目,下列表述正确的是()。
最新回复
(
0
)