首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且f’(x)>.证
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且f’(x)>.证
admin
2016-06-27
84
问题
设y=f(x)是区间[0,1]上的任一非负连续函数.
(1)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积.
(2)又设f(x)在区间(0,1)内可导,且f’(x)>
.证明(1)中的x
0
是唯一的.
选项
答案
(1)本题可转化为证明x
0
f(x
0
)=[*]令φ(x)=一x∫
x
1
f(t)dt,则φ(x)在闭区间[0,1]上是连续的,在开区间(0,1)上是可导的,又因为φ(0)=φ(1)=0,根据罗尔定理可知,存在x
0
∈(0,1),使得φ’(x
0
)=0,即 [*] (2)令 F(x)=xf(x)一∫
x
1
f(t)dt, [*] F’(x)=xf’(x)+f(x)+f(x)=2f(x)+xf’(x)>0, 即F(x)在(0,1)内是严格单调递增的,从而F(x)=0的点x=x
0
一定唯一,因此(1)中的点是唯一的.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/NFT4777K
0
考研数学三
相关试题推荐
李鸿章是中国近代史上的一个重要人物,他镇压了太平军和捻军起义,签订了《中法新约》《中日马关条约》和《辛丑条约》等一系列不平等条约,在许多方面负有不可推卸的责任。但李鸿章仍有值得肯定之处,其中最为典型的是()。
资本—帝国主义对中国侵略采取的手段主要是()。
1949年10月1日,首都军民30万人齐集北京天安门广场举行开国大典,欢庆中华人民共和国的诞生。中华人民共和国的成立,宣告中国人民当家作主的时代已经到来,中国历史由此开辟了一个新纪元。中华人民共和国成立的伟大意义体现在()。
从[0,1]中随机取两个数,求两数之和小于6/5的概率.
下列各函数均为x→0时为无穷小,若取x为基本无穷小,求每个函数的阶:
作适当的变换,计算下列二重积分:
求下列极限
微分方程y"+y=x2+1+sinx的特解形式可设为
已知f(x)在x=0某邻域内连续,且f(0)=0,,则在点x=0处f(x)().
设f(x)在x0的邻域内j阶连续可导,且f’(x0)=f"(x0)=0,f"’(x0)>0,则下列结论正确的是().
随机试题
审美活动不同于人类其他活动的突出特点就在于()
Onhearingthenewsoftheaccidentinthecoalmine,she______pale.
妇女月经先期而来,色深而质稠,此证属于()(2004年第19题)
牙发育至根尖孔完成后即牙发育完成后所形成的牙本质是
关于成年人烧伤面积的描述,错误的是
遇到什么天气不能从事高处作业?()
根据诉讼时效法律制度的规定,下列关于诉讼时效期间起算的说法中,错误的是()。
在关系模型中,二维表的行称为______。
TheauthorhadtroubleoperatinghisVCRbecauseAccordingtothepassage,beforegVCRissoldonthemarket,itsoriginalmod
【B1】【B8】
最新回复
(
0
)