首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,齐次线性方程组AX=0,r(A)=n一5,α1 ,α2 ,α3 ,α4 ,α5是该方程组5个线性无关的解向量,则方程组AX=0的一个基础解系是( ).
设A是m×n矩阵,齐次线性方程组AX=0,r(A)=n一5,α1 ,α2 ,α3 ,α4 ,α5是该方程组5个线性无关的解向量,则方程组AX=0的一个基础解系是( ).
admin
2022-01-05
88
问题
设A是m×n矩阵,齐次线性方程组AX=0,r(A)=n一5,α
1
,α
2
,α
3
,α
4
,α
5
是该方程组5个线性无关的解向量,则方程组AX=0的一个基础解系是( ).
选项
A、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
5
,α
5
+α
1
B、α
1
一α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
5
,α
5
+α
1
C、α
1
一α
2
,α
2
一α
3
,α
3
一α
4
,α
4
+α
5
,α
5
+α
1
D、α
1
一α
2
,α
2
一α
3
,α
3
一α
4
,α
4
一α
5
,α
5
一α
1
答案
A
解析
上述各选择项中的向量均为AX=0的解向量,这是显然的.关键要确定哪一组向量线性无关.可利用下述结论观察求出:
已知向量组α
1
,α
2
,…,α
s
(s≥2)线性无关,设β
1
=α
1
±α
2
,β
2
=α
2
±α
3
,…,β
s一1
一α
s一1
±α
s
,β
s
=α
s
±α
1
,其中s为向量组中的向量个数.又设上式中带负号的向量个数为k,则
(1)当s与k的奇偶性相同时,向量组β
1
,β
2
,…,β
r
线性相关;
(2)当x与k的奇偶性相反时,向量组β
1
,β
2
,…,β
r
线性无关.
由线性相关的定义易知,选项(D)中向量组线性相关.因
(α
1
一α
2
)+(α
2
一α
3
)+(α
3
一α
4
)+(α
4
一α
5
)+(α
5
一α
1
)=0,
至于(B)、(C)中的向量组也可用矩阵表示法证明线性相关.例如对于(B).有
[α
1
一α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
5
,α
5
+α
1
]=[α
1
,α
2
,α
3
,α
4
,α
5
]
故选项(B)中向量组线性相关,同理,可证选项(C)中向量组也线性相关.
转载请注明原文地址:https://www.kaotiyun.com/show/NER4777K
0
考研数学三
相关试题推荐
下列命题中正确的是
设A是n阶矩阵,下列命题错误的是().
n阶矩阵A和B具有相同的特征向量是A和B相似的()
设φ(x)在[a,b]上连续,且φ(x)>0,则函数y=∫ab|x一t|φ(t)dt的图形在(a,b)内()
设A=E—2ξξT,其中ξ=(x1,x2,…,xn)T,且有ξTξ=1。则①A是对称矩阵;②A2是单位矩阵;③A是正交矩阵;④A是可逆矩阵。上述结论中,正确的个数是()
设随机变量(i=1,2)且满足P{X1X2=0}=1,则P{X1=X2}等于()
二次型f(x1,x2,…,xn)=XTAX,其中AT=A,则f(x1,x2,…,xn)为正定二次型的充分必要条件是().
设随机变量X与Y均服从正态分布,X~N(μ,42),Y~N(μ,52),记p2=P{X≤μ一4},p2=P{Y≥μ+5},则()
设随机变量序列X1,X2,…,Xn,…相互独立,则根据辛钦大数定律,依概率收敛于其数学期望,只要{Xn:n≥1}()
曲线的切线与X轴和Y轴围成一个图形,记切点的横坐标为a.试求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
随机试题
关于感觉,下列表述错误的是()
对于黑色金属,当表面呈黄色或淡红色,成细粉末状,用麻布或棕刷擦拭即可除掉,去锈后仅轻微损伤氧化膜层时,应属于()。
A.优琐B.0.02%呋喃西林C.3%氯化钠D.2%硝酸银E.10%鱼石脂软膏肉芽水肿创面选用
影响药物水解的外部因素包括
下列关于低密度脂蛋白的说法,正确的是
一般情况下,未设置自动灭火系统的耐火等级为二级的丙类多层厂房,其每个防火分区的最大允许建筑面积为()m2。
对被辞退人员,()内不得再录用为人民警察。
中国革命走农村包围城市、武装夺取政权的道路,必须处理好土地革命、武装斗争、农村根据地建设三者之间的关系。三者各自的地位是()
求下列极限:(I)w=(II)w=
A、Gooverseas.B、Stayathome.C、Takeromanticcruises.D、Takeescortedtrips.B题目问说话者在以后的假期中会做什么。文章提到他们不想去任何地方了,在未来相当长的一段时间里都计划
最新回复
(
0
)