首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组 与方程 x1+2x2+x3=a-1 (Ⅱ) 有公共解,求a的值及所有公共解.
设线性方程组 与方程 x1+2x2+x3=a-1 (Ⅱ) 有公共解,求a的值及所有公共解.
admin
2020-04-30
56
问题
设线性方程组
与方程
x
1
+2x
2
+x
3
=a-1 (Ⅱ)
有公共解,求a的值及所有公共解.
选项
答案
解法1:将方程组(Ⅰ)与(Ⅱ)联立得 [*] 则方程组(Ⅲ)的解便是方程组(Ⅰ)与(Ⅱ)的公共解.对方程组(Ⅲ)的增广矩阵A施行初等行变换: [*] 由于方程组(Ⅲ)有解,故其系数矩阵的秩等于增广矩阵A的秩.于是得(a-1)(a-2)=0,即a=1或a=2. 当a=1时, [*] 由此得方程组(Ⅲ)亦即方程组(Ⅰ)与(Ⅱ)的公共解为 [*] 其中k为任意常数. 当a=2时, [*] 由此知方程组(Ⅲ)亦即方程组(Ⅰ)与(Ⅱ)的公共解为 x=(0,1,-1)
T
. 解法2:先求方程组(Ⅰ)的解.其系数行列式为 [*] 当a≠1且a≠2时,系数行列式不等于零,于是齐次方程组(Ⅰ)只有零解.但零向量x=(0,0,0)
T
显然不是方程(Ⅱ)的解(a≠1且a≠2). 当a=1时,对方程组(Ⅰ)的系数矩阵施行初等行变换: [*] 因此方程组(Ⅰ)的通解为x=k(-1,0,1)
T
(k为任意常数).而且此解也满足方程(Ⅱ).总之,此时方程组(Ⅰ)与(Ⅱ)的所有公共解为 [*] 其中k为任意常数. 当a=2时,对方程组(Ⅰ)的系数矩阵施行初等行变换: [*] 此时方程组(Ⅰ)的通解为x=k(0,-1,1)
T
(k为任意常数).将此解代入方程(Ⅱ),得k=-1,所以方程组(Ⅰ)与(Ⅱ)的所有公共解为 [*] 综上,a=1和a=2.
解析
本题考查含参数的方程组求公共解的方法.有两个解法:一是根据两个方程组有公共解的条件知,把这两个方程组联列后的方程组也应有解,且其解即为所求的公共解;二是把一个方程组的解代入到另一个方程组,确立它们的公共解.
转载请注明原文地址:https://www.kaotiyun.com/show/Mbv4777K
0
考研数学一
相关试题推荐
(91年)设n阶方程A、B、C满足关系式ABC=E,其中E是n阶单位阵,则必有
矩阵An×n的特征多项式的常数项为________.
设D为两个圆x2+y2≤1及(x一2)2+y2≤4的公共部分,则=______.
向量组α1=(1,-1,3,0)T,α2=(-2,1,a,1)T,α3=(1,1,-5,-2)T的秩为2,则a=_______.
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为_______.
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P→Q”表示可由
将一枚匀称的硬币独立地掷三次,记事件A=“正、反面都出现”;B=“正面最多出现一次”;C=“反面最多出现一次”,则下列结论中不正确的是
设封闭曲面S:x2+y2+z2=R2(R>0),法向量向外,则=_____
若直线相交,则必有
设在光滑曲面∑所围闭区域Q上,P(x,y,z),Q(x,y,z),R(x,y,z)有二阶连续偏导数,且∑为Ω的外侧边界曲面,由高斯公式可知的值为______.
随机试题
阅读下面的文字:其夜,华林部①过马伶:“子,天下之善技者也。然无以易李伶。李伶之为严相国至矣。子又安从受之而掩其上哉?”马伶曰:“固然,天下无以易李伶;李伶即又不肯授我。我闻今相国昆山顾秉谦者②。严相国俦③也。我走京师,求为其门卒三年,日侍相国于
为非特异性梅毒血清试验的是
下列关于聚酯片基的特点,叙述错误的是
选择人工前牙不必考虑的因素是
下列关于人民监督员制度的表述,哪一项是不能成立的?()
对于一家普通的国内上市公司,首次向银行申请短期贷款时,应提交的资信审查文件有()。
原始凭证金额有错误的,应当由出具单位进行更正,并在更正处加盖出具单位印章。()
外国旅游者无论因为何种原因要求提前离团回国,导游人员都要在领导的指示下帮助其预定机票,办理分离签证及其它离团手续,所需费用由旅游者自理。()
已知当x→时,arcsinx-arctanax与bx[x-ln(1+x)]是等价无穷小,则ab=()
Alcoholhasapeculiarrelationshiptohappiness.Wedrinktocelebrate,butbecausealcoholworksasadepressant,itendsupd
最新回复
(
0
)