首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
admin
2016-09-19
71
问题
设A是m×n阶实矩阵,证明:(1)r(A
T
A)=r(A);(2)A
T
AX=A
T
b一定有解.
选项
答案
(1)设r(A)=r
1
,r(A
T
A)=r
2
,由于AX=0的解都满足(A
T
A)X=A
T
(AX)=0,故AX=0的基础解系(含n-r
1
个无关解)含于A
T
AX=0的某个基础解系(含n-r
2
个无关解)之中,所以n-r
1
≤n-r
2
,故有r
2
≤r
1
,即 r(A
T
A)≤r(A). ① 又当A
T
AX=0时(X为实向量),必有X
T
A
T
AX=0,即(AX)
T
AX=0,设AX=[b
1
,b
2
,…,b
m
]
T
,则(AX)
T
(AX)=[*]=0,必有b
1
=b
2
=…=b
m
=0,即AX=0,故方程组A
T
AX=0的解必满足方程组AX=0,从而有 n-r(A
T
A)≤n-r(A), r(A)≤r(A
T
A). ② 由式①,②得证r(A)=r(A
T
A). (2)A
T
AX=A
T
b有解<=>r(A
T
A)-=r(A
T
A|A
T
b). 由(1)知r(A)=r(A
T
)=r(A
T
A),将A
T
,A
T
A=B以列分块,且B=A
T
A的每个列向量均可由A
T
的列向量线性表出,故A
T
和B=A
T
A的列向量组是等价向量组,A
T
b是A
T
的列向量组的某个线性组合,从而r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故 r(A
T
A)=r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b), 故(A
T
A)X=A
T
b有解.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/MVT4777K
0
考研数学三
相关试题推荐
[*]
A、 B、 C、 D、 A
7.8
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设A,B是同阶正定矩阵,则下列命题错误的是().
求常数a、b、c的值,使函数f(x,y,z)=axy2+byz+cx3z2在点(1,-1)处沿z轴正方向的方向导数成为各方向的方向导数中的最大者,且此最大值为6
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
某彩票每周开奖一次,每次提供十万分之一的中奖机会,且各周开奖是相互独立的.某彩民每周买一次彩票,坚持十年(每年52周),那么他从未中奖的可能性是多少?
设有大小相同、标号分别为1,2,3,4,5的五个球,同时有标号为1,2,…,10的十个空盒.将五个球随机放入这十个空盒中,设每个球放入任何一个盒子的可能性都是一样的,并且每个空盒可以放五个以上的球,计算下列事件的概率:(1)A={某指定的五个盒子中各有一
随机试题
下图所示两次超静定结构,可以选下图(b)为基本结构进行力法汁算。()
疑为肝性脑病时首选的检测指标
某患者单独进入到大型超市购物时,就会感到胸闷、出冷汗,所以一直回避这些场所。心理治疗师详尽地了解了患者焦虑的场合和回避的程度,训练患者学习放松技术,制定了一张等级表进行分级暴露,这种治疗方法为()
【2014年第102题】关于抗震设计的B级高度钢筋混凝土高层建筑的说法,正确的是:
资料:劳伦斯特公司2012年8月末资产总额为500万元。负债总额为零,9月份公司发生如下经济业务(不考虑增值税):业务一:以银行存款购买一台价值30万元不需要安装的机器设备。业务二:向光大公司购买生产用材料15万元,材料已入库
位置公差项目共有()项。
关于公司债描述不正确的是()。
醉里挑灯看剑,梦回吹角连营。八百里分麾下炙,五十弦翻塞外声。沙场秋点兵。马作的卢飞快,弓如霹雳弦惊。了却君王天下事,赢得生前身后名。可怜白发生!关于这段文字所属的诗词,下列说法正确的是()。
司法活动的特点包括
A.risenB.smoothC.friendlyD.exceedingE.rapidF.varyG.expensiveH.suddenI.whileJ.raisedK.responseL.fo
最新回复
(
0
)