首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值.其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值.其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
admin
2019-08-12
94
问题
设A为三阶矩阵,方程组AX=0的基础解系为α
1
,α
2
,又λ=-2为A的一个特征值.其对应的特征向量为α
3
,下列向量中是A的特征向量的是( ).
选项
A、α
1
+α
3
B、3α
3
-α
1
C、α
1
+2α
2
+3α
3
D、2α
1
-3α
2
答案
D
解析
因为AX=0有非零解,所以r(A)<n,故0为矩阵A的特征值,α
1
,α
2
为特征值0所对应的线性无关的特征向量,显然特征值0为二重特征值。若α
1
+α
3
为属于特征值λ
0
的特征向量,则有A(α
1
+α
3
)=λ
0
(α
1
+α
3
),注意到A(α
1
+α
3
)=0α
1
-2α
3
=-2α
3
,故-2α
3
=λ
0
(α
1
+α
3
)或λ
0
α
1
+(λ
0
+2)α
3
=0,因为α
1
,α
3
线性无关,所以有λ
0
=0,λ
0
+2=0,矛盾,故α
1
+α
3
不是特征向量,同理可证3α
3
-α
1
及α
1
+2α
2
+3α
3
也不是特征向量,显然2α
1
-3α
2
为特征值0对应的特征向量,选D.
转载请注明原文地址:https://www.kaotiyun.com/show/MSN4777K
0
考研数学二
相关试题推荐
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T,试讨论当a,b为何值时,(Ⅰ)β不能由α1,α2,α3线性表示;(Ⅱ)β可由α1,α2,α3惟一地线性表示,并求出表示式;(Ⅲ)β
问a、b为何值时,线性方程组无解、有唯一解、有无穷多解?并求有无穷多解时的通解.
设实对称矩阵A满足A2-3A+2E=O,证明:A为正定矩阵.
设矩阵A=,|A|=-1,A的伴随矩阵A*有一个特征值为λ0,属于λ0的一个特征向量为α=(-1,-1,1)T.求a,b,c和λ0的值.
一电子仪器由两部分构成,以X和Y分别表示两部分部件的寿命(单位:千小时),已知X和Y的联合分布函数为F(x,y)=(1)问X和Y是否独立;(2)求两部件的寿命都超过100小时的概率α。
设f(x)在[a,b]上连续,在(a,b)内可导.试证明:若再添设f(x)不是一次式也不为常函数的条件,则至少存在一点ξ∈(a,b)使
计算其中D是由圆周x2+y2=4,x2+y2=1及直线y=0,y=x所围的位于第一象限的闭区域.
设平面区域D由x=0,y=0,x+y=,x+y=1围成,若则I1,I2,I3的大小顺序为()
设f(x)在x=0的邻域内有定义,且f(0)=0,则f(x)在x=0处可导的充分必要条件是().
设f(x)在x=a的邻域内有定义,且f’+(a)与f’-(a)都存在,则().
随机试题
从违法行为的要素来看,判断行为是否违法的关键要素是该行为有故意或者过失的过错。()
Theyfinallycametoa______thattheywouldeatittogether.
此病人最可能的诊断是此时可诊断为
设计方项目管理的目标是( )。
根据公司法律制度的规定,某股份有限公司董事会由9名董事组成,下列情形中,能使董事会决议得以顺利通过的有()。
用一个饼铛烙煎饼,每次饼铛上最多只能同时放两个煎饼,煎熟一个煎饼需要2分钟的时间,其中每煎熟一面需要1分钟。如果需要煎熟15个煎饼,至少需要()分钟。
《中华人民共和国土地管理法》第1条规定,为了加强土地管理,维护土地的社会主义公有制,保护开发土地资源,合理利用土地,(),促进社会经济的可持续发展,根据宪法,制定本法。
Universitiesusuallygivediplomasorcertificatestostudentswhocompletecourserequirementsadequately.
Whycan’ttheymeetonThursday?
Oneofthequestionscomingintofocusaswefacegrowingscarcityofresourcesintheworldishowtodividelimitedresources
最新回复
(
0
)