首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下三个命题: ①若数列{un|收敛于A,则其任意子数列{uni}必定收敛于A; ②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A; ③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A.
以下三个命题: ①若数列{un|收敛于A,则其任意子数列{uni}必定收敛于A; ②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A; ③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A.
admin
2018-08-22
91
问题
以下三个命题:
①若数列{u
n
|收敛于A,则其任意子数列{u
n
i
}必定收敛于A;
②若单调数列{x
n
}的某一子数列{x
n
i
}收敛于A,则该数列必定收敛于A;
③若数列{x
2n
}与{x
2n+1
}都收敛于A,则数列{x
n
}必定收敛于A.
正确的个数为 ( )
选项
A、0
B、1
C、2
D、3
答案
D
解析
对于命题①,由数列收敛的定义可知,若数列{u
n
}收敛于A,则对任意给定的ε>0,存在自然数N,当n>N时,恒有
|u
n
一A|<ε,
则当n
i
>N时,恒有
|u
n
i
一A|<ε,
因此数列{u
n
i
}也收敛于A,可知命题正确.
对于命题②,不妨设数列{x
n
}为单调递增的,即
x
1
≤x
2
≤…≤x
n
≤…,
其中某一给定子数列{x
n
i
}收敛于A,则对任意给定的ε>0,存在自然数N,当n
i
>N时,恒有
|x
n
i
一A|<ε.
由于数列{x
n
}为单调递增的数列,对于任意的n>N,必定存在n
i
≤n≤n
i+1
,有
一ε<x
n
i
—A≤x
n
一A≤x
n
i+1
一A<ε,
从而 |x
n
一A|<ε,
可知数列{x
n
}收敛于A因此命题正确.
对于命题③,因
由极限的定义可知,对于任意给定的ε>0,必定存在自然数N
1
,N
2
,使得
当2n>N
1
时,恒有|x
2n
一A|<ε;
当2n+1>N
2
时,恒有|x
2n+1
一A|<ε.
取N=max{N
1
,N
2
},则当n>N时,总有|x
n
一A|<ε.因此
可知命题正确.
故答案选择D.
转载请注明原文地址:https://www.kaotiyun.com/show/LTj4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,a<x1<x2<…<xn<b,试证:在[a,b]内存在ξ,使得
证明:若A为n阶方阵,则有|A*|=|(一A)*|(n≥2).
设函数f(x),g(x)在[a,b]上连续且单调增,证明:∫abf(x)dx∫abg(x)dx≤(b一a)∫abf(x)g(x)dx.
设a,b均为常数,a>一2,a≠0,求a,b为何值时,使
已知齐次线性方程组(I)为又已知线性方程组(Ⅱ)的通解为x=k1(s,2,3,16)T+k2(2,1,2,t)T,其中k1,k2是任意常数.若方程组(I)与(Ⅱ)同解,试求m,n,s,t的值.
对数螺线r=eθ在(r,θ)=处的切线的直角坐标方程.
设一1<x1<0,xn+1=xn2+2xn(n=0,1,2,…).证明数列{xn}的极限存在,并求此极限值.
设a>0,x1>0,且定义证明当n→∞时,数列{xn}的极限存在并求此极限值.
已知f(x)=arctanx,求f(n)(0).
设求f(x)的间断点并判定其类型.
随机试题
医患关系的发展趋势包括( )。
(2007)关于钢结构材料的特性,下列何项论述是错误的?
关于网架结构特点的说法,正确的是()。
课堂里主要的人际关系有()。
科学教育的目标主要在于促进儿童学习科学,其最终目的是通过科学学习,掌握基本的科学知识。()
简述教师威信的形成与建立途径。
《论十大关系》的报告确定了一个基本方针,就是()
你去参加你认为非常重要的演讲会,你舒服地坐在讲台附近,准备以全副精神去聆听了解。演讲者开始演讲了,令你惊奇的是,你居然一个字也听不懂,尽管你很用心,可你就是不知道他说什么。真是奇怪,怎么会这样。最后你发现原来演讲者是用瑞典话演讲,难怪你—个字也没听懂。这使
【B1】【B9】
Jack________fromhomefortwodaysnow,andIambeginningtoworryabouthissafety.
最新回复
(
0
)