首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α=3(-1,2,-3)T都是A属于λ=6的特征向量,求矩阵A.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α=3(-1,2,-3)T都是A属于λ=6的特征向量,求矩阵A.
admin
2016-05-31
56
问题
设3阶实对称矩阵A的秩为2,λ
1
=λ
2
=6是A的二重特征值,若α
1
=(1,1,0)
T
,α
2
=(2,1,1)
T
,α=
3
(-1,2,-3)
T
都是A属于λ=6的特征向量,求矩阵A.
选项
答案
由r(A)=2知,|A|=0,所以λ=0是A的另_特征值. 因为λ
1
=λ
2
=6是实对称矩阵的二重特征值,故A属于λ=6的线性无关的特征向量有两个,因此α
1
,α
2
,α
3
必线性相关,显然α
1
,α
2
线性无关. 设矩阵A属于λ=0的特征向量α=(x
1
,x
2
,x
3
)
T
,由于实对称矩阵不同特征值的特征向量相互正交,故有 [*] 解出此方程组的基础解系α=(-1,1,1)
T
. 根据A(α
1
,α
2
,α
3
)=(6α
1
,6α
2
,0),因此 A=(6α
1
,6α
2
,0)(α
1
,α
2
,α)
-1
=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/LQT4777K
0
考研数学三
相关试题推荐
1904年,孙中山发表《中国问题的真解决》一文,指出只有推翻清朝政府的统治,“以一个新的、开明的、进步的政府来代替旧政府”,“把过时的满清君主政体改变为‘中华民国’”,才能真正解决中国问题。这表明以孙中山为首的资产阶级革命派在踏上革命道路之时,就高举起民主
资产阶级思想与封建主义思想在中国的第一次正面交锋是()。
毛泽东在《中国的红色政权为什么能够存在?》一文中曾详尽地讲述了中国红色政权发生和存在的五点原因,红军第五次反“围剿”的失败充分证明了()。
以毛泽东同志为核心的党的第一代中央领导集体带领全党全国和各族人民完成了新民主主义革命,进行了社会主义改造,确立了社会主义基本制度,这一基本制度的确立()。(2013.30多选)
历史证明,我国的社会主义改造是十分成功的,因为()。
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
证明[*]
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
随机试题
ThenorthernpartsoftheUnitedStatesgetverycoldinthewinter.Itsnowsagreatdealandthetemperatureoftengoes【C1】___
妇女分娩时死亡,尸体解剖发现肺小动脉内有角化上皮细胞、毛发等物质,其死亡原因可能是()
简述法律继承的内容。
下列选项中,不属于现金流出的是()。
建设工程监理合同属于()。
某公司已知资料如下:资料一:以上每月销售收入中有70%能于当月收现,20%于次月收现,10%于第三个月收讫,不存在坏账。假定该公司销售的产品在流通环节只需缴纳消费税,税率为10%,并于当月以现金缴纳。资料二:该公司3月末现金余额为40万元,应
我国《宪法》规定:“父母有抚养教育未成年子女,成年子女有赡养抚助父母的义务。”这说明()。
以()为基础的数据库系统称为关系数据库系统。
Sincethedawnofe-mail,usingsarcasmindigitalcommunicationhascreatedstrifeandconfusionbetweenfriends,colleaguesan
I’vedecidedtotaketheplungeandstartupmyownbusiness.Theunderlinedwordmeans
最新回复
(
0
)