首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (1)求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2)求A的特征值. (3)求作可逆矩阵P,使
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (1)求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B. (2)求A的特征值. (3)求作可逆矩阵P,使
admin
2019-05-11
69
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量组,满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
(1)求作矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B.
(2)求A的特征值.
(3)求作可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
(1)在第二章中,已经用矩阵分解求出 [*] (2)由于α
1
,α
2
,α
3
线性无关,(α
1
,α
2
,α
3
)是可逆矩阵,并且(α
1
,α
2
,α
3
)
-1
A(α
1
,α
2
,α
3
)=B,因此A和B相似,特征值相同. [*] B的特征值为1,1,4.A的特征值也为1,1,4 (3)先把B对角化.求出B的属于1的两个线性无关的特征向量(1,-1,0)
T
,(0,2,-1)
T
;求出B的属于4的一个特征向量(0,1,1)
T
.构造矩阵 [*] 令P=(α
1
,α
2
,α
3
)D=(α
1
-α
2
,2α
2
-α
3
,α
2
+α
3
),则 P
-1
AP=D
-1
(α
1
,α
2
,α
3
)
-1
A(α
1
,α
2
,α
3
)D=D
-1
BD=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/KyV4777K
0
考研数学二
相关试题推荐
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
设A为三阶实对称矩阵,且为A的不同特征值对应的特征向量,则a=_______.
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
设f(χ)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=0,且|f′(χ)|≤2.证明:|∫02f(χ)dχ|≤2.
(1)设=0,求a,b的值.(2)确定常数a,b,使得ln(1+2χ)+=χ+χ2+o(χ2).(3)设b>0,且=2,求b.
设f(χ)是连续函数.(1)求初值问题的解,其中a>0;(2)若|f(χ)|≤k,证明:当χ≥0时,有|f(χ)|≤(eaχ-1).
求极限
设三阶矩阵已知Aα和α线性相关,则a=______.
设非齐次线性方程组Ax=β的通解为x=k1(1,0,0,1)T+k2(2,1,0,1)T+(1,0,1,2)T,其中k1,k2为任意常数,A=(α1,α2,α3,α4),则()
摆线(a>0,0≤t≤2π)绕x轴旋转一周所成曲面的表面积为________.
随机试题
下列哪项不属于永久性创面覆盖物范畴
下列各项,可引起腹痛伴休克的是
阿苯达唑可用于
(2006年)某县公安局民警甲在一次治安检查中被乙打伤,公安局认定乙的行为构成妨碍公务,据此对乙处以200元罚款。甲认为该处罚决定过轻。下列哪种说法是正确的?
住宅中插座回路用的剩余电流(漏电)动作保护,其动作电流应是()。
某分部工程双代号网络计划如下图所示,图中错误的为( )。
国际分工发展的过程表明,在国际分工中处于中心地位的国家,在国际贸易中不一定占据重要地位。()
存款业务是属于商业银行的()。[2015年10月真题]
Coconutoilhasbecomepopularashealthieroilincooking,cleaningandevenaspartofanaturalbeautyproduct.Atroomtempe
微分方程y″+2y′+5y=0的通解为________。
最新回复
(
0
)