首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=|(x一1)(x一2)2(x一3)3|,则导数f’(x)不存在的点的个数是( )
设f(x)=|(x一1)(x一2)2(x一3)3|,则导数f’(x)不存在的点的个数是( )
admin
2019-02-01
38
问题
设f(x)=|(x一1)(x一2)
2
(x一3)
3
|,则导数f’(x)不存在的点的个数是( )
选项
A、0。
B、1。
C、2。
D、3。
答案
B
解析
考查带有绝对值的函数在x
n
点处是否可导,可以借助如下结论。
设f(x)为可导函数,则
①若f(x
0
)≠0,且f(x)在x
0
处可导,则|f(x)|在x
0
处可导;
②若f(x
0
)=0,且f’(x
0
)=0,则|f(x)|在x
0
处可导;
③若f(x
0
)=0,且f’(x
0
)≠0,则|f(x)|在x
0
处不可导。
设φ(x)=(x一1)(x一2)
2
(x一3)
3
,则f(x)=|φ(x)|。f’(x)不存在的点就是f(x)不可导的点,根据上述结论可知,使φ(x)=0的点x
1
=1,x
2
=2,x
3
=3可能为不可导点,故只需验证φ’(x
i
)(i=1,2,3)是否为零即可,而φ’(x)=(x一2)
2
(x一3)
2
+2(x一1)(x一2)(x一3)
3
+3(x一1)(x一2)
2
(x一3)
3
,显然,φ’(1)≠0,φ’(2)=0,φ’(3)=0,所以只有一个不可导点x=1。故选B。
转载请注明原文地址:https://www.kaotiyun.com/show/Juj4777K
0
考研数学二
相关试题推荐
设函数z=z(x,y)由方程sinx+2y—z=ez所确定,则=___________.
设f(x)和g(x)是对x的所有值都有定义的函数,具有下列性质:(1)f(x+y)=f(x)g(y)+f(y)g(x);(2)f(x)和g(x)在x=0处可微,且当x=0时,f(0)=0,g(0)=1,f’(0)=1,g’(0)=0.
设方阵A1与B1合同,A2与B2合同,证明:合同.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设f(x)=,为了使f(x)对一切x都连续,求常数a的最小正值.
设f(χ)有连续导数,f(0)=0,f′(0)≠0,F(χ)=∫0χ(χ2-t2)f(t)dt且当χ→0时,F′(χ)与χk是同阶无穷小,则k等于【】
微分方程y’-xe-y+=0的通解为______
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
随机试题
在T形构件的基础上增加一块翼板,便构成了工形结构。工形结构可有效地抵御焊后翼板的角变形。
绝对黑体的辐射力与其绝对温度的()次方成正比。
烧伤休克期补液指标下面哪项不正确()。
治疗脑血管痉挛性疾病宜选用
资金结构是指借款人全部资金使用中各种用途所占的比重.及其相互间的比例关系。()
青深有限公司(以下简称青深公司)为增值税一般纳税企业,其适用的增值税税率为17%。1998年与另外3个单位合资兴办甲企业,该企业注册资本总额为2000000元,青深公司持有30%的股份,其他3含单位持有的股份分别为25%、25%和20%。青深公司对甲
甲企业与乙银行签订借款合同,借款合同约定:甲企业向乙银行借款1000万元,借款期限自2015年1月1日至2015年12月31日.。甲企业将其现有的以及将有的生产设备、原材料、半成品、产品一并抵押给乙银行,双方于2015年1月4日签订了书面抵押合同,并于20
在假设检验中,记H0为零假设、H1为对立假设,则第二类错误指的是()。
我们今天太多地在强调知识的广博,很少强调思维的深度。思考以前是时间维度的,现在是空间维度的。海南,桂林,南极,北极,每个人都能跳跃性地和你说一大堆,但就一点谈深的功夫,比如谈你的家乡、你的社区,就很缺乏。这和我们阅读的习惯有关系。我们每个人都是“知道分子”
Ahistoryoflongandeffortlesssuccesscanbeadreadfulhandicap,but,ifproperlyhandled,itmaybecomeadrivingforce.Wh
最新回复
(
0
)