首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)定义在(a,b)上,c∈(a,b),又设H(x),G(x)分别在(a,c],[c,b)连续,且分别在(a,c)与(c,b)是f(x)的原函数.令 其中选常数C0,使得F(x)在x=c处连续. 就下列情形回答F(x)是否是f(x)在(a,b)的原
设f(x)定义在(a,b)上,c∈(a,b),又设H(x),G(x)分别在(a,c],[c,b)连续,且分别在(a,c)与(c,b)是f(x)的原函数.令 其中选常数C0,使得F(x)在x=c处连续. 就下列情形回答F(x)是否是f(x)在(a,b)的原
admin
2016-10-20
77
问题
设f(x)定义在(a,b)上,c∈(a,b),又设H(x),G(x)分别在(a,c],[c,b)连续,且分别在(a,c)与(c,b)是f(x)的原函数.令
其中选常数C
0
,使得F(x)在x=c处连续.
就下列情形回答F(x)是否是f(x)在(a,b)的原函数.
(Ⅰ)f(x)在点x=c处连续;
(Ⅱ)点x=c是f(x)的第一类间断点;
(Ⅲ)点x=c是f(x)的第二类间断点.
选项
答案
(Ⅰ)F’(c)=[*] 因此,F(x)是f(x)在(a,b)的原函数. (Ⅱ)F(x)不是f(x)在(a,b)的原函数,因为在这种情形下f(x)在(a,b)不存在原函数. (Ⅲ)在这种情形下结论与f(x)的表达式有关,需要对问题作具体分析.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/JZT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 A
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
若幂级数在x=-1处收敛,则此级数在x=2处().
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
求由下列曲线所围成的闭区域D的面积:(1)D是由直线ax+by=r1,ax+by=r2,cx+dy=s1,cx+dy=s2所围成的平行四边形闭区域,其中r1<r2,s1<s2,ad-bc≠0;(2)D是由曲线xy=4,xy3=4,xy=8,y3=15所
求下列隐函数的指定偏导数:
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
求下列齐次型方程的通解:(1)xyˊ=y(1ny-lnx);;(3)xyˊ=xey/x+y;(4)(x+y)yˊ=x-y;(5)(x2+y2)dx-xydy=0;(6)(x+ycosy/x)dx-xcosy/xdy=0.
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③符Ax=0与Bx=0同解,则秩(A)
随机试题
立克次体与细菌的主要区别是()
引起低渗性脱水的原因包括
在水处理时需采用淋法的药物是
根据《规划环境影响评价技术导则总纲》(HJ130-2019),下列()属于规划环境影响篇章(或说明)应包括的主要内容。
某市建筑集团公司承担一栋20层智能化办公楼工程的施工总承包任务,层高3.3m,其中智能化安装工程分包给某科技公司施工。在工程主体结构施工至第18层、填充墙施工至第8层时,该集团公司对项目经理部组织了一次工程质量、安全生产检查。部分检查情况如下:(1
审计机关的下列权限中,属于审计处理措施的有()。
()是象征型文学的基本特征。
抽样调查数据显示,2014年1—5月A区农村居民人均现金收入9053元,同比增长10.3%,增速较去年同期提高0.4个百分点;其中人均工资性收入为5421元,同比增长8.5%;人均家庭经营收入为760元,同比下降0.6%;人均财产性收入为1241元,同比增
.在科技十分落后的古代,人们梦想过许多东西,如千里眼、顺风耳、飞毯、神枪之类,但像现代生活中普及的电话、电视、电脑等,是那时的人们连想都想不到的。这说明,理想具有()。
(Mother)can’trisk(toleft)Baby(alone).She(shouldstay)withit.
最新回复
(
0
)