首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Why Pagodas Don’t Fall Down A)In a land swept by typhoons and shaken by earthquakes, how have Japan’s tallest and seemingly flim
Why Pagodas Don’t Fall Down A)In a land swept by typhoons and shaken by earthquakes, how have Japan’s tallest and seemingly flim
admin
2014-12-26
67
问题
Why Pagodas Don’t Fall Down
A)In a land swept by typhoons and shaken by earthquakes, how have Japan’s tallest and seemingly flimsiest old buildings—500 or so wooden pagodas—remained standing for centuries? Records show that only two have collapsed during the past 1400 years. Those that have disappeared were destroyed by fire as a result of lightning or civil war.
B)The disastrous Hanshin earthquake in 1995 killed 6,400 people, toppled elevated highways, flattened office blocks and devastated the port area of Kobe. Yet it left the magnificent five-storey pagoda at the Toji temple in nearby Kyoto unscathed, though it levelled a number of buildings in the neighbourhood.
C)Japanese scholars have been mystified for ages about why these tall, slender buildings are so stable. It was only thirty years ago that the building industry felt confident enough to erect office blocks of steel and reinforced concrete that had more than a dozen floors. With its special shock absorbers to dampen the effect of sudden sideways movements from an earthquake, the thirty-six-storey Kasumigaseki building in central Tokyo—Japan’s first skyscraper—was considered a masterpiece of modern engineering when it was built in 1968.
D)Yet in 826, with only pegs and wedges to keep his wooden structure upright, the master builder Kobodaishi had no hesitation in sending his majestic Toji pagoda soaring fifty-five metres into the sky—nearly half as high as the Kasumigaseki skyscraper built some eleven centuries later. Clearly, Japanese carpenters of the day knew a few tricks about allowing a building to sway and settle itself rather than fight nature’ s forces. But what sort of tricks?
E)The multi-storey pagoda came to Japan from China in the sixth century. As in China, they were first introduced with Buddhism and were attached to important temples. The Chinese built their pagodas in brick or stone, with inner staircases, and used them in later centuries mainly as watchtowers.
F)When the pagoda reached Japan, however, its architecture was freely adapted to local conditions—they were built less high, typically five rather than nine storeys, made mainly of wood and the staircase was dispensed with because the Japanese pagoda did not have any practical use but became more of an art object. Because of the typhoons that batter Japan in the summer, Japanese builders learned to extend the eaves of buildings further beyond the walls. This prevents rainwater gushing down the walls. Pagodas in China and Korea have nothing like the overhang that is found on pagodas in Japan.
G)The roof of a Japanese temple building can be made to overhang the sides of the structure by fifty percent or more of the building’ s overall width. For the same reason, the builders of Japanese pagodas seem to have further increased their weight by choosing to cover these extended eaves not with the porcelain tiles of many Chinese pagodas but with much heavier earthenware tiles.
H)But this does not totally explain the great resilience of Japanese pagodas. Is the answer that, like a tall pine tree, the Japanese pagoda—with its massive trunk—like central pillar known as shinbashira—simply flexes and sways during a typhoon or earthquake? For centuries, many thought so. But the answer is not so simple because the startling thing is that the shinbashira actually carries no load at all.
I)In fact, in some pagoda designs, it does not even rest on the ground, but is suspended from the top of the pagoda—hanging loosely down through the middle of the building. The weight of the building is supported entirely by twelve outer and four inner columns.
J)And what is the role of the shinbashira, the central pillar? The best way to understand the shinbashira’ s role is to watch a video made by Shuzo Ishida, a structural engineer at Kyoto Institute of Technology. Mr Ishida, known to his students as "Professor Pagoda" because of his passion to understand the pagoda, has built a series of models and tested them on a "shake-table" in his laboratory. In short, the shinbashira was acting like an enormous stationary pendulum. The ancient craftsmen, apparently without the assistance of very advanced mathematics, seemed to grasp the principles that were, more than a thousand years later, applied in the construction of Japan’ s first skyscraper.
K)What those early craftsmen had found by trial and error was that under pressure a pagoda’ s loose stack of floors could be made to slither to and fro independent of one another. Viewed from the side, the pagoda seemed to be doing a snake dance—with each consecutive floor moving in the opposite direction to its neighbours above and below. The shinbashira, running up through a hole in the centre of the building, constrained individual storeys from moving too far because, after moving a certain distance, they banged into it, transmitting energy away along the column.
L)Another strange feature of the Japanese pagoda is that, because the building tapers, with each successive floor plan being smaller than the one below, none of the vertical pillars that carry the weight of the building is connected to its corresponding pillar above. In other words, a five-storey pagoda contains not even one pillar that travels right up through the building to carry the structural loads from the top to the bottom.
M)More surprising is the fact mat the individual storeys of a Japanese pagoda, unlike their counterparts elsewhere, are not actually connected to each other. They are simply stacked one on top of another like a pile of hats. Interestingly, such a design would not be permitted under current Japanese building regulations.
N)And the extra-wide eaves? Think of them as a tightrope walker’s balancing pole. The bigger the mass at each end of the pole, the easier it is for the tightrope walker to maintain his or her balance. The same holds true for a pagoda. "With the eaves extending out on all sides like balancing poles", says Mr Ishida, "the building responds to even the most powerful jolt of an earthquake with a graceful swaying, never an abrupt shaking". Here again, Japanese master builders of a thousand years ago anticipated concepts of modern structural engineering.
The builders of pagodas knew how to absorb some of the power produced by severe weather conditions.
选项
答案
D
解析
题干意为,宝塔的建造者懂得如何利用恶劣环境所产生的能量。原文D段最后一句,“Clearly,Japanese carpenters of the day knew a few tricks about allowing abuilding to sway and settle itself rather than fight nature’s forces.”当时的日本工匠知道一些技巧让建筑物可以顺风摇摆和矗立,而不是与大自然的力量对抗。可看出,题干是对原文的改写,故选D。
转载请注明原文地址:https://www.kaotiyun.com/show/JYm7777K
0
大学英语六级
相关试题推荐
Ifyou’reoneofthosepeoplewhotendstoputonweightaroundyourmiddle,whatdoctorscallan"appleshape"—whattherestof
Ifyou’reoneofthosepeoplewhotendstoputonweightaroundyourmiddle,whatdoctorscallan"appleshape"—whattherestof
Worldleadersneedtotakeactionontheenergycrisisthatistakingshapebeforeoureyes.Oilpricesare【C1】______anditlook
Worldleadersneedtotakeactionontheenergycrisisthatistakingshapebeforeoureyes.Oilpricesare【C1】______anditlook
儒家思想是中国传统文化的基石。它出现在大约2500年前的春秋时期(theSpringandAutumnPeriod),是建立在夏、商、周朝的传统文化之上,并由孔子创立的完整观念体系(ideologicalsystem)。儒家思想博大精深,涵盖了
Go(围棋)isanancientAsiangame.Inrecentyears,computerexperts,particularlythose【C1】______inartificialintelligence,have
A、Increasingfinesfortrafficviolation.B、Reducingtollsonhighways.C、Banningpublictransportpartially.D、Enlarginginsura
WhyPagodasDon’tFallDownA)Inalandsweptbytyphoonsandshakenbyearthquakes,howhaveJapan’stallestandseeminglyflim
Everyyearthroughouttheworld【C1】______6,000earthquakesaredetected.Thevastmajorityoftheseare【C2】______toosmallorto
随机试题
妊娠早期羊水的主要来源是
轮状病毒肠炎的临床特点描述不正确的是
遗传学实验已经证实,DNA是生物遗传信息的携带者,并且可以进行自我复制,也正因为如此,才保证了在细胞分裂时,亲代细胞的遗传信息正确无误地传递到两个子代细胞中。复制是一个由酶催化进行的复杂的DNA的生物合成过程。复制是(),即其中一条链是连续的,另一条链
牙周病患者在使用牙线前应首先进行
权属登记机关自受理登记申请之日起()日内应当决定是否予以登记,对暂缓登记、不予登记的,应当书面通知权利人。
()是仓储人根据存货人或仓单持有人所持有的仓单,按其所列货物的编号、名称、规格、型号、数量等项目,组织货物出库的一系列货物。
【2016河南郑州】为了达到一定的教学目的,对教学内容、组织、方法及媒体的使用等所进行的系统规划称为()。
人民警察对公民提出解决纠纷的要求,可以给予帮助。()
马克思的劳动价值理论,是马克思主义政治经济学体系的出发点。以劳动价值理论为基本立论基础,马克思系统地分析了资本主义的生产过程及其市场经济活动,深刻地揭示了资本主义生产方式的内在规律。分析说明马克思的劳动价值理论及其发展,深化对社会主义劳动和劳动价值理论的研
壮观的
最新回复
(
0
)